

These are 3 statements!

Thum: For any 
$$x, y \in \mathbb{Z}$$
,  
() If x is odd and y is odd, then  
x+y is even.  
(2) If x is even and y is odd, then  
x+y is odd.  
(3) If x is even and y is even, then  
x+y is even.  
Proof: (1) Suppose x and y are both odd.  
Then there exist integers k and  
 $\lambda$  such that  
 $x = 2k+1$   
and  $y = 2\ell+1$   
Thus,  
 $x+y = (2k+1) + (2\ell+1)$   
 $= 2(k+\ell+1)$ .  
Since  $k+\ell+1 \in \mathbb{Z}$ , this proves x+y is even  
(2) and (3) left as exercises.

Is there any integer which is both even and odd? This would imply 1 is even!  $(Or, equivalently, \frac{1}{2} \in \mathbb{Z})$ How do ne know this isn't so?