Warm-Up: Use induction to show

$$
1+3+3^{2}+\cdots+3^{n}=\frac{3^{n+1}-1}{2}
$$

for every non-negative integer n.

Parity
Def: Let $n \in \mathbb{Z}$ be an integer. Then
(1) n is even if $n=2 k$ for some $k \in \mathbb{Z}$.
(2) n is odd if $n=2 l+1$ for some $l \in \mathbb{Z}$

These are \exists statements!

Thu: For any $x, y \in \mathbb{Z}$,
(1) If x is odd and y is odd, then $x+y$ is even.
(2) If x is even and y is odd, then $x+y$ is odd.
(3) If x is even and y is even, then $x+y$ is even.
Proof: (1) Suppose x and y are both odd. Then there exist integers k and
l such that

$$
\text { and } \begin{aligned}
& x=2 k+1 \\
& y=2 l+1
\end{aligned}
$$

Thus,

$$
\begin{aligned}
x+y & =(2 h+1)+(2 l+1) \\
& =2(k+l+1) .
\end{aligned}
$$

Since $k+l+\mid \in \mathbb{Z}$, this proves $x+y$ is even.
(2) and (3) left as exercises.

Is there any integer which is both even and odd?

This would imply 1 is even! (Or, equivalently, $\frac{1}{2} \in \mathbb{Z}$.)
How do we know this isn't so?

