Case 1: n is even. Then
$$n=2h$$

for some $k \in \mathbb{Z}$. Thus,
 $n+1 = 2h+1$
is odd, proving $P(n+1)$ is true.
Case 2: n is odd. Then $n=2l+1$
for some $l \in \mathbb{Z}$. Thus,
 $n+1 = (2l+1)+1 = 2l+2$
 $= 2(l+1)$.
Since $l+1 \in \mathbb{Z}$, this shows
 $n+1$ is even. So $P(n+1)$ is true.
Thus, $P(n+1)$ is true in both
cases. This completes the inductive
step.
We conclude that $P(n)$ is true
for each $n \in M$.
It remains to prove $P(n)$ for
 $n \leq 0$.

$$\frac{2 \text{ ero}: 0=2(0) \text{ is even, so } P(0)}{\text{ is true.}}$$

$$\frac{\text{Negatives}: \text{ Every negative integer}}{\text{ is of the form -n, where nell.}}$$

$$Thus, it suffices to prove$$

$$P(n) \implies P(-n)$$
for each nell.
So assume $P(n)$ is true.
$$\frac{\text{Case } 1: n \text{ is even. Then } n=2k}{\text{for some } k \in \mathbb{Z}. \text{ Thus,}}$$

$$-n=-2k=2(-k)$$
is even, since $-k \in \mathbb{Z}.$

$$\frac{\text{Case } 2: n \text{ is odd. Then } n=2l+1}{\text{for some } l \in \mathbb{Z}. \text{ Now,}}$$

$$-n=-(2l+1)=-2l-1$$

$$=2(-l-1)+1.$$
Since $-l-1 \in \mathbb{Z}$, this shows -n is odd

Thus, P(-n) is true in both cases.

Since P(n) and $P(n) \Rightarrow P(-n)$ are both true for every nEN, ne conclude P(-n) is true for every ne N.

