Positive Integers
Goal: Use Axioms 7-10 to show

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

Axiom 7 simply tells us that \mathbb{N} exists.
\rightarrow Define $a<b$ to mean $b-a \in \mathbb{N}$.
Axiom 8 tells us that \mathbb{N} is closed under + and.
Axiom 9 tells us there is a trichotomy:
Each $a \in \mathbb{Z}$ satisfies exactly one of

- $a \in \mathbb{N} \Leftrightarrow a>0 \quad$ " a is positive"

$$
\text { - } a=0
$$

$.-a \in \mathbb{N} \Leftrightarrow a<0 \quad$ " a is negative"
Axiom 10 is mysterious...

Lemma 6: $1 \in \mathbb{N}$.
Proof: By trichotomy, we only need to eliminate the other two possibilities.

- $1 \neq 0$ by Axiom 5 (Identity)
- To show $-1 \in \mathbb{N}$ is false, we will assume it is the and derive a contradiction.

Suppose $-1 \in \mathbb{N}$. Then by Axiom 8,

$$
(-1) \cdot(-1)=1 \in \mathbb{N}
$$

also. But $-1 \in \mathbb{N}$ and $1 \in \mathbb{N}$ cannot both be tine, by Axiom 9 .
Thus, $-1 \in \mathbb{N}$ is false.
The only remaining possibility is $1 \in \mathbb{N}$.

Note: We proved that $(-1 \in \mathbb{N})$ is false by contradiction.
In general, we can prove that a sentence P is false as follows:
(1) Assume P is tree.
(2) Show that this assumption leads us to a contradiction. That is, we are forced to conclude that a sentence Q is true, even though we already know Q to be false.

Formally, if we prove

$$
P \Rightarrow Q
$$

where Q is known to be false, then P must also be false.

Lemma 7: For any $a, b \in \mathbb{Z}$, if $a \cdot b=0$, then $a=0$ or $b=0$.

Proof: Homework 9.
Note: Prove the contrapositive:
If $a \neq 0$ and $b \neq 0$, then $a \cdot b \neq 0$.
By trichotomy, $x \neq 0$ if and only if

$$
\cdot x \in \mathbb{N} \quad(\text { ie } x>0)
$$

or

$$
\cdots x \in \mathbb{N} \text { (ie. } x<0 \text {). }
$$

Now, consider cases.

Let's use this to prove:
Thu 10: For any $a, b, c \in \mathbb{Z}$ with $a \neq 0$, if $a \cdot b=a \cdot c$, then $b=c$.
[Multiplicative Cancellation]
Proof: Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Suppose $a \cdot b=a \cdot c$. Then

$$
\begin{aligned}
& a \cdot b-a \cdot c=0 \\
& a \cdot(b-c)=0 .
\end{aligned}
$$

B_{y} the Lemma, $a=0$ or $b-c=0$. But $a \neq 0$, so $b-c=0$.

That is, $b=c$.

Note: No division required!
(And no division defined in \mathbb{Z}.)

Lemma 9: For any $a, b \in \mathbb{Z}$, exactly
one of the following is tine: one of the following is time:

$$
\begin{aligned}
& \cdot a<b \\
& \cdot a=b \\
& \cdot a>b
\end{aligned}
$$

[That is, \mathbb{Z} is linearly ordered by $<$]

Proof idea: Apply trichotomy to b-a.

Lemma 10: Let $a, b, c \in \mathbb{Z}$.
(1) If $a<b$, then $a+c<b+c$
(2) If $a<b$ and $c>0$, then $a \cdot c>b \cdot c$.

Proof: (1) Suppose $a<b$. Then $b-a \in \mathbb{N}$.
Now,

$$
(b+c)-(a+c)=b-a \in \mathbb{N}
$$

So $a+c<b+c$.
(2) Suppose $a<b$ and $c>0$.

Then $b-a \in \mathbb{N}$ and $c \in \mathbb{N}$, so

$$
(b-a) \cdot c \in \mathbb{N}
$$

by Axiom 8. But

$$
(b-a) \cdot c=b \cdot c-a \cdot c, \quad(\text { Axiom 4) }
$$

So $a \cdot c<b \cdot c$.

The Well-Ordering axiom (\#10) is the only one ne haven't used get. It says that any non-empty subset of \mathbb{N} has a smallest element.

An element $a \in S$ is the smallest element of S if for all $x \in S, a \leq x$.

In symbols: $(\forall x \in S)(a \leq x)$
Observe that a smallest element in S, if it exists, is unique.

$$
(\forall x \in S)(a \leq x) \text { and }(\forall x \in S)(b \leq x)
$$ implies $a \leqslant b$ and $b \leqslant a$, so $a=b$.

Lemma: The integer 1 is the smallest
element of \mathbb{N}.
Proof: First, we know \mathbb{N} has a smallest element by the Well-Ordening axiom.
Call it a.

Since $a \leq n$ for every $n \in \mathbb{N}$, we have $a \leq 1$. Therefore $a=1$ or $a<1$. If $a=1$, we are done.

To show $a<1$ is false, we will assume it's the and derive a contradiction.

So assume $a<1$. Because $a \in \mathbb{N}, 0<a$. Multiply the inequality $a<1$ by $a>0$ to get

$$
a \cdot a<1 \cdot a=a .
$$

Now, $a \cdot a \in \mathbb{N}$ by Positive Closure, which contradicts a being the smallest element of N.

Thus, our assumption that $a<1$ is false, so $a=1$.

