Positive Integers
Goal: Use Axioms 7-10 to show
$$N = \{1, 2, 3, ...\}$$

Axiom 7 simply tells us that N exists.
Define a **Axiom 8 tells us that N is closed under
t and .
Axiom 9 tells us there is a trichotomy:
Each a Z satisfies exactly one of
. a is a is a > a > a > a > a > a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a
> a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a**

Lemma 6: IEN.

Proof: By trichotomy, ne only need to etiminate the other two possibilities. • | = 0 by Axiom 5 (Identity) • To show $-1 \in IN$ is filse, we will assume it is the and derive a contradiction. Suppose $-1 \in \mathbb{N}$. Then by Axiom 8, $(-1) \cdot (-1) = 1 \in \mathbb{N}$ also. But -1 «IN and I«IN cannot both be the, by Axiom 9. Thus, -lell is filse. The only remaining possibility is IEN.

Note: We proved that (-1 (1)) is
false by contradiction.
In general, we can prove that
a sextence P is false as follows:
O Assume P is tree.
(2) Show that this assumption
leads us to a contradiction.
That is, we are forced to
conclude that a sentence Q
is true, even though we
already know Q to be false.
Formally, if we prove
$$P \Rightarrow Q$$
,
where Q is known to be false,
then P must also be false.

Lemma 7: For any
$$a, b \in \mathbb{Z}$$
, if $a \cdot b = 0$, then
 $a = 0$ or $b = 0$.

Proof: Homework 9.

Note: Prove the contrapositive: If $a \neq 0$ and $b \neq 0$, then $a \cdot b \neq 0$. By trichotomy, $X \neq 0$ if and only if $\cdot x \in \mathbb{N}$ (i.e. x > 0) Or $-x \in \mathbb{N}$ (i.e. x < 0). Now, consider cases. Let's use this to prove: <u>Thm 10</u>: For any a, b, c & With a #0, if a.b = a.c, then b=c. [Multiplicative Cancellation]

Proof: Let
$$a, b, c \in \mathbb{Z}$$
 with $a \neq 0$.
Suppose $a \cdot b = a \cdot c$. Then
 $a \cdot b - a \cdot c = 0$
 $a \cdot (b - c) = 0$.

By the Lemma, a=0 or b-c=0. But $a \neq 0$, so b-c=0. That is, b=c.

(2) Suppose
$$a \le b$$
 and $c \ge 0$.
Then $b = a \in N$ and $c \in N$, so
 $(b = a) \cdot c \in N$
by Axiom 8. But
 $(b = a) \cdot c = b \cdot c = a \cdot c$, (Axiom 4)
so $a \cdot c \le b \cdot c$.
The Well-Ordering axiom (#10) is the only one
is haven't used yet. It says that any
non-empty subset of N has a smallest element.
An element $a \in S$ is the smallest element of
 S if for all $x \in S$, $a \le x$.
In symbols: $(\forall x \in S)(a \le x)$
Observe that a smallest element in S , if it exists,
is unique.
 $(\forall x \in S)(a \le x)$ and $(\forall x \in S)(b \in x)$
implies $a \in b$ and $b \in a$, so $a = b$.