Last time: I is the smallest positive integer:
This actually shows that the integers
are what you think they are:
We know 0, 1 & Z by the Identity axiom.
We also know 1+1 = 2
2+1 = 3
3+1 = 4
i
are positive integers.
If there was another positive number x not on this
list, then it would satisfy
$$n < x < n+1$$
 for
some ne N. But then $0 < x - n < 1$, which violates
the theorem.
So $N = \{1, 2, 3, 4, ...\}$.
The only other integers, by Trichotomy,
satisfy $-a \in N$. That is, they are
the additive inverses of elements in M.

Together,
$$Z = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$$
.

$$\frac{\text{Divisibility}}{\text{Def}: \text{Let } d \text{ and } n \text{ be integers. We say}} \\ \frac{d \text{ divides } n \text{ if there exists an integer } k \\ \frac{d \text{ divides } n \text{ if there exists an integer } k \\ \text{such that } n = dk. \\ \\ \frac{\text{Note on definitions}: A \text{ definition } is a \iff \text{ statement, but} \\ \text{ it is often written as } a \implies \text{ statement.} \\ \\ \text{So} \\ d \text{ divides } n \iff (\exists k \in 2)(n = dk) \\ \\ \\ \\ \frac{\text{Notation}: d | n \text{ means } "d \text{ divides } n"} \\ \end{cases}$$

Ex: $2 \ln \iff n = 2k$ for some $k \in \mathbb{Z}$ $\iff n$ is even.

Ex: $3 \ln \Leftrightarrow n = 3k$ for some $k \in \mathbb{Z}$ So 3 divides 3 (3=3.1) """ 9 (9=3.3) ""-6 (-6=3.(-2)) "" 0 (0=3.0)

Ex: Every integer d'divides 0, because $0 = d \cdot 0$. • 1 divides every integer n, because $n = 1 \cdot n$. • 0 only divides itself, because $n = 0 \cdot k \implies n = 0$.

Ex: The divisors of 15 are $\pm 1, \pm 3, \pm 5, \pm 15$.

Warning: din is the sentence "I divides n"

$$d/n$$
 is the number d .
Note: When $d \neq 0$,
 $d \mid n$ is true $(\Rightarrow) n = d \cdot k$ for some $k \in \mathbb{Z}$
 $\Rightarrow \frac{\pi}{d}$ is an integer
We assually avoid division, as that can
take as out of the integers.
Thum: Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $(-d) \mid n$.
Proof: Suppose $d \mid n$. Then there exists $k \in \mathbb{Z}$ such
that $n = d k$. Then
 $n = [(-1) \cdot (-1)] \cdot d k = (-d)(-k)$
Since $-k \in \mathbb{Z}$, this shows $(-d) \mid n$.

For this reason, we often only list positive divisors.

dh >d

Ð

ie. n?d.