Last time: 1 is the smallest positive integer.
This actually shows that the integers are what you think they are:
-We know $0,1 \in \mathbb{Z}$ by the Identity axiom.
-We also know $1+1=2$

$$
\begin{aligned}
& 2+1=3 \\
& 3+1=4
\end{aligned}
$$

are positive integers.
If thee was another positive number x not on this list, then it would satisfy $n<x<n+1$ for some $n \in \mathbb{N}$. But then $0<x-n<1$, which volutes the theorem.
So $\mathbb{N}=\{1,2,3,4, \ldots\}$.

- The only other integers, by Trichotomy, satisfy $-a \in \mathbb{N}$. That is, they are the additive inverses of elements in \mathbb{N}.

Together, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

Note: The handout shows this slightly more rigorously, by proving the Principle of Mathematical Induction.

Divisibility
Def: Let d and n be integers. We say d divides n if there exists an integer k such that $n=d k$.

Note on definitions: A definition is a \Leftrightarrow statement, but it is often written as $a \Rightarrow$ statement.
So d divides $n \Leftrightarrow(\exists k \in \mathbb{Z})(n=d k)$

Notation: $d \mid n$ means " d divides n "

Ex: $2 \mid n \Leftrightarrow n=2 k$ for some $k \in \mathbb{Z}$ $\Leftrightarrow n$ is even.

Ex: $31 n \Leftrightarrow n=3 k$ for some $k \in \mathbb{Z}$

$$
\begin{array}{ccc}
\text { So } 3 \text { diodes } 3 & (3=3.1) \\
& 9 & (9=3.3) \\
& -6 & (-6=3 \cdot(-2)) \\
& - & 0
\end{array}(0=3.0)
$$

Def: When $d \ln$, we say d is a divisor of n and n is a multiple of d.

Ex: - Every integer d divides 0 , because $0=d \cdot 0$.

- 1 divides every integer n, because $n=1 \cdot n$.
- O only divides itself, because $n=0 \cdot k \Rightarrow n=0$.

Ex: The divisors of 15 are $\pm 1, \pm 3, \pm 5, \pm 15$.

Warning: d / n is the sentence "d divides n" d / n is the number $\frac{d}{n}$

Note: When $d \neq 0$,
$d \mid n$ is time $\Leftrightarrow n=d \cdot k$ for some $k \in \mathbb{Z}$ $\Leftrightarrow \frac{n}{d}$ is an integer

We usually avoid division, as that can take us out of the integers.

Thu: Let $d, n \in \mathbb{Z}$. If $d \ln$, then $(-d) \ln$.
Proof: Suppose d / n. Then there exists $k \in \mathbb{Z}$ such that $n=d k$. Then

$$
n=[(-1) \cdot(-1)] \cdot d k=(-d)(-k)
$$

Sine $-k \in \mathbb{Z}$, this shows $(-d) \mid n$.

For this reason, we often only list positive divisors.

The: Let $d, n \in \mathbb{N}$. If d / n, then $d \leq n$.
Proof: Suppose din. Then there exists $k \in \mathbb{Z}$ such that

$$
n=d k .
$$

Now, $k \leqslant 0$ or $k \geqslant 1$.
Suppose, for the sate of contindiction, that $k \leqslant 0$. Since $d>0, n=d k \leqslant 0$, which contradicts $n \in \mathbb{N}$.

So $k \geqslant 1$. Multiply by d to get

$$
d k \geqslant d
$$

ie. $n \geqslant d$.

