Warm-Up: Let
$$d, n, m \in \mathbb{Z}$$
. Prove that if
 $d|n$ and $d|m$, then $d|(n+m)$.

Thm: For any
$$a, b, c \in N$$
,
(D) ala. [Reflexivity]
(2) If alb and bla, then $a = b$. [Antisymmetry]
(3) If alb and blc, then alc. [Trunsitivity]

Proof: Hw 10.

This theorem says divisibility is a <u>partial order</u> on N.

Another partial order is 5.

$$\frac{N \text{ ordered } by \leq}{1 \leq 2 \leq 3 \leq 4 \leq \cdots}$$

$$Bony. This is a total order - it arranges$$

$$N along a line.$$

$$E_{x}: 2, 3, 5, 7, 11$$
 are prime

Non-Ex: 21 is not prime, because
$$21 = 3 - 7$$
.
If we set $a = 3$ and $b = 7$, Hen
 $21 = ab$ but $a \neq 1$ and $b \neq 1$.

Def: An integer n is composite if
① n > 1
and
② n is not prime
By Generalized de Morgan, ② means there
exist a, b \in N such that n = ab and
a ≠ 1 and b ≠ 1.
Thm: If p is prime, then its only positive
divisors are 1 and p.
Proof: Suppose p is prime and let d be
a positive divisor of p.
By definition of divisibility, there excists
$$k \in \mathbb{Z}$$

such that p = dk. Since p and d are
positive, so is k. Thus, d, k & M with p=dk,
so d = 1 or k = 1.
If d=1, we're done.
If d=1, we're done.
If k=1, then p=dk=d·1=d.
Thus, d=1 or d=p.

In fact, the converse is the. Thm: Let n be an integer with n>1. If the only divisors of n are 1 and n, then n is prime. Proof: Suppose n>1 is an integer, and the only positive divisors of n are 1 and n. We must show, for all $a, b \in \mathbb{N}$, if n = ab then a = 1 or b = 1. So suppose n = ab for some $a, b \in \mathbb{N}$. Then, by definition of divisibility, $a \mid n$. Thus, a = 1 or a = n. If a=1, then we're done. If a=n, then n=n·b. So n·1=n·b. By concellation, 1=6. Thus, a=1 or b=1.

Together, the last two theorems prove

$$P$$
 is prime \iff $P>1$ and the only
possitive divisors of P
are 1 and P.
Equivalently,
 $n > 1$ and n has a
 $n > 1$ and n has a
possitive divisor d with
 $d \neq 1$ and $d \neq n$.

Note: We can think of these biconditional (<>>) sentences as alternate (but equivalent) definitions.