$$\frac{Warm - U_{P}}{P \wedge Q} : Chech Hhat
\cdot P \wedge Q = Q \wedge P
\cdot P \wedge (Q \wedge R) = (P \wedge Q) \wedge R
That is, A is commutative and associative.$$

PAQ is true exactly when at least one of Por Q is true.

Ρ	Q	PVQ
Т	T	Т
Т	F	Т
F	Т	Т
F	F	F

Ex: 2 is even or 3 is odd. T 2 is even or 3 is even. T 2 is odd or 3 is even. F

<u>Note</u>: PVQ = QVPPV(QVR) = (PVQ)VR

How do the operations \neg , Λ , V interact with one another? Ex: Let P = "m is even."Q = "n is odd."Then PAQ is "miseren and nisodd." This becomes false if m is not even OR n is not odd. i.e. $\neg (PAQ)$ is true $\equiv \neg P \lor \neg Q$ In general, ne have: Thm (De Morgan's Laws) Let P and Q be sentences. Then (a) - (PAQ) is logically equivalent to -PV-Q (b) ¬(PVQ) is logically equivalent to -PA-Q

By truth table:

P	Q	PAQ	- (PAQ)	٦P	¬ Q	-PV-Q
Т	Т	Т	4	F	Ē	Я
Т	F	F	Т	Ч	Т	Т
F	Т	Ч	Т	Т	F	Т
F	F	F	Т	T	Т	T

So we see ¬(PAQ) = ¬PV¬Q.

We can also prove this by giving an explanation in words: We wish to show $\neg(PAQ)$ always has the same truth value as $\neg P \lor \neg Q$. First, suppose $\neg(PAQ)$ is true. Then PAQis false, so at least one of P or Q is false.

(b) HW 1