Warm-Up: Find integers x and y such that
$$51x - 13y = 1$$

Last time: m & IN, a, b & Z

 $a = b \mod m$ \iff same remainder when divided by m.

Properties

Thm: Let mEN.

- (a) For all a∈Z, a = a mod m [Reflexive]
- (b) For all a, b = Z, if a = b mod m, then b = a mod m. [Symmetric]
- (c) For all a,b,c ∈Z, if a = b mod m and b = c mod m, Hen a = c mod m [Transitive]

Proof: HW 14.

Together, these properties say that congruence mod m is an <u>equivalence</u> relation.

Equivalence relations give a notion of "sameness."

Other examples: Equality (of integers, real numbers, functions,...)
Logical equivalence of sentences

· Congruence of triangles · Similarity of triangles

Thm: Let $m \in \mathbb{N}$ and $a,b,c,d \in \mathbb{Z}$. Suppose $a = b \mod m$ and $c = d \mod m$. Then

- (a) a+c = b+d mod m.
- (b) a-c = b-d mod m.
- (c) ac = bd mod m.

Proof: HW 14.

Ex: When
$$m=2$$
, every $a \in \mathbb{Z}$ satisfies exactly one of $a \equiv 0 \mod 2 \iff a$ is even $a \equiv 1 \mod 2 \iff a$ is odd

So when we do arithmetic mod 2, we can replace every integer by 0 or 1.

We have

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 2 = 0 \mod 2$
 $0 \cdot 0 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$

So ue have the following + and · tables:

mod 2	0	1	modz	0	1
0	0	1	0	0	O
١	l	0	1	0	l

This recovers

+	even	old	•	even	odd
	eren		even	even	even
odd	odd	even	old	even	odd

Ex: What is the remainder when 22.19 is divided by 3?

Recall: Remainder is the unique rell such that 0 = r = 2 and 22.19 = r mod 3.

22 = 1 mod 3, 19 = 1 mod 3,

So 22.19 = 1.1 mod 3 = 1 mod 3,

meaning 22.19 leaves a remainder of 1 when divided by 3.

Ex: What is the remainder when $(754 + 1083) \cdot 17$ is divided by 5?

 $(754 + 1083) \cdot 17 \equiv (4 + 3) \cdot 2 \mod 5$ $\equiv 7 \cdot 2 \mod 5$ $\equiv 2 \cdot 2 \mod 5$ $\equiv 4 \mod 5$

So the remainder is 4.