$W_{\text {arm }}-U_{p}$ : Make + and - tables for arithmetic modulo 4.

Thy: Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. If

$$
a \equiv b \bmod m
$$

then

$$
a^{n} \equiv b^{n} \bmod m
$$

for every $n \in \mathbb{N}$.
Proof: Let $P(n)$ be " $a^{n} \equiv b{ }^{n} \bmod m$." Well use induction.

Base Case: $P(1)$ is given.
Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(a)$ is true. That is, $a^{n} \equiv b^{n} \bmod \mathrm{~m}$.

Since $a \equiv b \bmod m$, we get

$$
a^{n} \cdot a \equiv b^{n} \cdot b \bmod m,
$$

ie., $a^{n+1} \equiv b^{n+1} \bmod m$. So $P(n+1)$ is time.
Thus, $P(n)$ is tine for all $n \in \mathbb{N}$ by $P \cdot M I$.

Ex: What is the remainder when $91^{100}$ is divided by 3?

Since $91 \equiv 1 \bmod 3$, we have

$$
\begin{aligned}
91^{100} & \equiv 1^{100} \bmod 3 \\
& \equiv 1 \bmod 3 .
\end{aligned}
$$

So the remainder is 1 .

Ex: What is the remainder aden $92^{100}$ is divided by 3 ?

Similarly, $92 \equiv 2 \bmod 3$, so

$$
92^{100} \equiv 2^{100} \bmod 3
$$

Now, $2^{2} \equiv 1 \bmod 3$, so

$$
\begin{aligned}
2^{100} & \equiv\left(2^{2}\right)^{50} \bmod 3 \\
& \equiv 1^{50} \bmod 3 \\
& \equiv 1 \quad \bmod 3
\end{aligned}
$$

Thus, the remainder is 1 .

Ex: What is the remainder when $258^{50}$ is divided by 5?

Since $258 \equiv 3 \bmod 5$, we have

$$
258^{50}=3^{50} \bmod 5
$$

Now, $3^{4}=81$, so $3^{4} \equiv 1 \bmod 5$.
Write

$$
50=4 \cdot 12+2 . \quad(50 \text { divided by } 4)
$$

Then

$$
3^{50}=3^{4 \cdot 12+2}=\left(3^{4}\right)^{12} \cdot 3^{2},
$$

So

$$
\begin{aligned}
258^{50} & \equiv 3^{50} \\
& \equiv\left(3^{4}\right)^{12} \cdot 3^{2} \quad \bmod 5 \\
& \equiv 1^{12} \cdot 9 \quad \bmod 5 \\
& \equiv 4 \quad \bmod 5 .
\end{aligned}
$$

The remainder is 4 .

Primes Redux

Our goal is now to prove that every $n \in \mathbb{N}$ has a unique prime factorization.

Ex:

$$
\begin{aligned}
& 12=2^{2} \cdot 3 \\
& 55=5 \cdot 11 \\
& 140=2^{2} \cdot 5 \cdot 7
\end{aligned}
$$

Minor issue \#1: 1 is not a product of primes.
Solution: Ignore 1.
(Or view it as the "empty product".)
Minor issue \#2: What do we mean by "unique"?

$$
\text { Ex: } 140=2 \cdot 2 \cdot 5 \cdot 7=2 \cdot 5 \cdot 2 \cdot 7=7 \cdot 2 \cdot 5 \cdot 2=\ldots
$$

Solution: The factorization is unique up to reordaing.
Or, unique if we list the primes in increasing order.

Thu (Fundamental Theorem of Arithmetic)
(1) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ a product of primes.
(2) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ can be written uniquely as a product of primes, in the following sense: Suppose that

$$
n=p_{1} p_{2} \cdots p_{r} \quad \text { and } \quad n=q_{1} q_{2} \cdots q_{s} \text {, }
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ and $q_{1}, q_{2}, \ldots, q_{s}$ are all primes such that

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{r} \quad \text { and } \quad q_{1} \leq q_{2} \leq \cdots \leq q_{5} \text {. }
$$

Then $r=s$ and $p_{i}=q_{i}$ for all $1 \leq i \leq r$.

We'll prove this soon.

