Ex: What is the remainder when 91⁰⁰ is divided by 3 ? Since 91 = 1 mod 3, we have 91'00 = 1'00 mod 3 = 1 mod 3. So the remainder is 1. Ex: What is the remainder den 92" is divided by 3? Similarly, $92 \equiv 2 \mod 3$, so 92¹⁰⁰ = 2¹⁰⁰ mod 3. Now, $2^2 \equiv 1 \mod 3$, so $2^{100} \equiv (2^2)^{50} \mod 3$ $\equiv 1^{50} \mod 3$ = 1 mod 3. Thus, the remainder is 1.

Ex: What is the remainder when 258 so is drided by 5? Since 258 = 3 mod 5, we have $258^{50} = 3^{50} \mod 5.$ N_{0} , $3^{4} = 81$, so $3^{4} = 1 \mod 5$. Write 50 = 4.12 + 2. (50 divided by 4) Then $3^{50} = 3^{4 \cdot 12 + 2} = (3^4)^{12} \cdot 3^2$

50

$$258^{50} \equiv 3^{50}$$

= $(3^{4})^{12} \cdot 3^{2} \mod 5$
= $1^{12} \cdot 9 \mod 5$
= 4 \mod 5.

The remainder is 4.

We'll prove this soon.