Warm-Up: Given that
and

$$
\begin{aligned}
10,192 & =2^{4} \cdot 7^{2} \cdot 13 \\
271,656 & =2^{3} \cdot 3^{2} \cdot 7^{3} \cdot 11
\end{aligned}
$$

compute $\operatorname{gcd}(10,192,271,656)$
and

$$
\operatorname{lcm}(10,192,271,656)
$$

Thu (Division by a prime): Let p be a prime number. Then for all $x, y \in \mathbb{Z}$, if ploy then plo or ply.

$$
\text { ie., } x y \equiv 0 \bmod p \Rightarrow \quad \text { or } \quad \begin{aligned}
& x \equiv 0 \bmod p \\
& y \equiv 0 \bmod p
\end{aligned}
$$

Note: The requirement that p be prime is important!
Ex: 416.10 (sine $6.10=60=4.15$), but 476 and 4110 .

Proof: Let p be a prime and $x, y \in \mathbb{Z}$. Suppose ploy.
If $p \mid x$, then we are done.
So suppose pta. We must show that ply.
Since $p \nmid x, \operatorname{gcd}(p, x)=1$ (HW 15).
Thus, by the reverse Euclidean Algorithm, there exist $u, v \in \mathbb{Z}$ such that

$$
p u+x v=1
$$

Multiply by y to get

$$
p u y+x y v=y
$$

Since plpuy and ploys, we have ply, as desired.

Cor: Let p be a prime. For each $n \in \mathbb{N}$ and all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}$, if $p l\left(x_{1} x_{2}, \cdots x_{n}\right)$ then p divides at least one of $x_{1}, x_{2}, \ldots, x_{n}$.
Proof: Let $P(n)$ be the sentence
"For all $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, if $p\left(x_{1} \cdots x_{n}\right)$ then p divides at least one of the x_{i}."

We will prove $P(n)$ holds for all $n \in \mathbb{N}$ by induction.

Base Case: $P(1)$ is automatically tome, since if $p \mid x_{1}$, then $p \mid x_{1}$

Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(n)$ is true.

Let $x_{1}, \ldots, x_{n+1} \in \mathbb{Z}$ and suppose

$$
p \mid\left(x_{1} \cdots x_{n}\right) \cdot\left(x_{n-1}\right) .
$$

By the theorem on division by a prime, $p \mid\left(x_{1} \cdots x_{n}\right)$ or $p \mid x_{n+1}$.

If $p \mid\left(x_{1} \cdots x_{n}\right)$, then by $P(n), p \mid x_{i}$ for some $(\leq i \leq n$, and we have the desired conclusion.

If $p \mid x_{n+1}$, then we also have the desired conclusion.

In either case, $P(n+1)$ is true, completing the inductive step.

Applications of FTA
Every integer $n \geqslant 2$ can be factored uniquely
as as a product of primes. up to commutativity

In practice, finding the prime factorization is HARD.
But the FTA has many "applications" in theoretical math.

In particular, we can re-cast statements about divisibility in terms of prime factorizations.

Let $a, b \geqslant 2$ be integers.

- For any prime p,
pla $\Leftrightarrow P$ appears in the prime factorization of a
every prime in the prime
- $a \mid b \Leftrightarrow$ factorization of a appears at least as many times in the prime factorization of b.
- The prime divisors of $\operatorname{gcd}(a, b)$ are the prime divisors that a and b have in common.

The number of times a prime p appears in the factorization of $\operatorname{gcd}(a, b)$ is the smaller of
the number of times p appears in the factorization of a

- $\operatorname{gcd}(a, b)=1 \Leftrightarrow a$ and b have no prime divisors in common "a and b are relatively prime"

Ex: $\quad a=96=2^{5} \cdot 3 \cdot 5^{0}, \quad b=180=2^{2} \cdot 3^{2} \cdot 5$

$$
\operatorname{gcd}(96,180)=2^{2} \cdot 3=12
$$

We can compute the least common multiple ($1+W{ }^{14}$) similarly:

$$
1 \mathrm{~cm}(96,180)=2^{5} \cdot 3^{2} \cdot 5=1440
$$

In heavier notation:
Let $a, b \geqslant 2$. We can write their prime factorizations as

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

and

$$
b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}},
$$

where p_{1}, \ldots, p_{k} is the complete list of primes which divide a or b, and

$$
e_{i} \geqslant 0 \quad \text { and } \quad f_{i} \geqslant 0
$$

for all i.

Then
$a \mid b \Longleftrightarrow e_{i} \leq f$ for all i.
It follows that

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{k}^{\min \left(e_{2}, f_{k}\right)},
$$

and

$$
\operatorname{Icm}(a, b)=p_{1}^{\max \left(e_{1}, f_{1}\right)} p_{2}^{\max \left(e_{2}, f_{2}\right)} \cdots p_{1}^{\max \left(e_{2}, f_{1}\right)}
$$

The: Let $a, b \in \mathbb{N}$. Then

$$
\operatorname{gcd}(a, b) \cdot \operatorname{Icm}(a, b)=a b .
$$

Equivalently, $\operatorname{kcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$ and $\operatorname{gcd}(a, b)=\frac{a b}{\operatorname{lcm}(a, b)}$.
Proof: Write

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \quad \text { and } \quad b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}
$$ as above.

Since $\min \left(e_{i}, f_{i}\right)+\max \left(e_{i}, f_{i}\right)=e_{i}+f_{i}$, we have

$$
\begin{aligned}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =p_{1}^{e_{1}+f_{1}} p_{2}^{e_{2}+f_{2}} \ldots p_{k}^{e_{k}+f_{k}} \\
& =a b .
\end{aligned}
$$

