Here are a few more applications of FTA:

Thm: Let
$$a, b, c \in \mathbb{Z}$$
.
(1) If $gcd(b, c) = 1$, then
 $gcd(a, bc) = gcd(a, b) \cdot gcd(a, c)$.
(2) If $gcd(a, b) = 1$ and $gcd(a, c) = 1$,
then $gcd(a, bc) = 1$.
(3) Let $d = gcd(a, b)$. Then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proof: (1) Let
$$b = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$
 and $c = q_1^{e_1} q_2^{e_2} \dots q_s^{e_s}$
be the unique prime factorizations
of b and c, where p_1, \dots, p_r are
the distinct prime divisors of b and
 q_1, \dots, q_s are the distinct prime divisors
of c, and the exponents e_i and f_j
are positive integers.

Since
$$gcd(b,c) = 1$$
, $P_i \neq q_j$ for all
i and j.
So $bc = \underbrace{P_i P_2^{e_1} \cdots P_r^{e_r} \cdot g_{1} g_2^{e_2} \cdots g_s^{e_s}}_{No primes in common}$
Now, the unique prime factorization
of a will book like
 $a = P_i^{e_1} P_s^{e_2} \cdots P_r^{e_r} \cdot g_{2}^{e_j} g_{2}^{e_j} \cdots g_{s}^{e_s} \cdot (other primes),$
where the exponents x_i, y_j are non-negative
(some might be 0).
Thus, $gcd(a, b) = p_i^{min(e_i, x_i)} \cdots p_r^{min(e_r, x_r)},$
 $gcd(a, c) = q_i^{min(f_i, y_i)} g_{2}^{min(f_i, y_i)} \cdots g_s^{min(f_s, y_s)},$
and
 $gcd(a, bc) = gcd(a, b) \cdot gcd(a, c).$
(2) HW 15.
(3) HW 16.

Proof of FTA part 1 Let S be the set of all counterexamples to FTA1. That is, for no M, nes (=> n ≥ 2 and n is not equal to a product of primes. We want to argue that FTAI is true, meaning S is empty. Suppose, to get a contradiction, that S is not empty. Then, by the Well-Ordening Axiom, there is a smallest element in S. Call it a. Since a?2, we know there is some prime p such that pla.

Thus, a=pk for some keZ. Since a and p are both positive, so is k. So $k \ge 1$. If k=1, then a=p is prime. But then $a \notin S$, a contradiction. If k>1, then k>2 (since LEZ) but k < pk = a (since $p \ge 2$). So k is smaller than a, the smallest element in S. Thus, k # S, meaning k is a product of primes. But then a = pk is a product of primes. So $a \notin S$, a contradiction.

divides one of the q.

WLOG,
$$p|q_1$$
. But p and q_1 are both
prime, so $p = q_1$. If $l \ge 2$, then
 $P = pq_2 \cdots q_k$
So $l = q_2 \cdots q_k$.
But this is impossible, so $l = l$ and
 $n = p$
is the unique prime functorization.

If
$$n = q_1 q_2 \dots q_4$$
 is another prime
factorization, then since $p_1 | n_1$, we
have $p_1 | (q_1 \dots q_4)$.
Similar to above, we deduce that
 p_1 is equal to one of the q_1 's.
 $WLOG$, $p_1 = q_1$.
Then $p_1 p_2 \dots p_{k+1} = p_1 q_2 \dots q_4$, so
 $p_2 \dots p_{k+1} = q_2 \dots q_4$.
But the left-hand side is a product
of k primes, so it has a unique prime
factorization by $P(k)$.
Thus, $l = k+1$ and, up to reordening,
the primes q_2, \dots, q_{k+1} are exactly
the primes p_2, \dots, p_{k+1} .

This proves P(k+1), completing the inductive step.