Here are a few more applications of FTA:

The: Let $a, b, c \in \mathbb{Z}$.
(1) If $\operatorname{gcd}(b, c)=1$, then

$$
\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c)
$$

(2) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
(3) Let $d=\operatorname{gcd}(a, b)$. Then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

Proof :(1) Let $b=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ and $c=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{s}^{f_{s}}$ be the unique prime factorizations of b and c, where p_{1}, \ldots, p_{r} are the distinct prime divisors of b and q_{1}, \ldots, q_{s} are the distinct prime divisors of c, and the exponents e_{i} and f_{j} are positive integers.

Since $\operatorname{gcd}(b, c)=1, \quad p_{i} \neq q_{j}$ for all i and j.

Now, the unique prime factorization of a will look like

$$
a=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}} \cdot q_{1}^{y_{1}} q_{2}^{y_{2}} \cdots q_{s}^{y_{s}} \text { (other primes), }
$$

where the exponents x_{i}, y_{j} are non-negative (some might be 0).

Thus, $\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, x_{1}\right)} p_{2}^{\min \left(e_{2}, x_{2}\right)} \cdots p_{r}^{\min \left(e_{r}, x_{r}\right)}$,

$$
\operatorname{gcd}(a, c)=q_{1}^{\min \left(f_{1}, y_{1}\right)} q_{2}^{\min \left(f_{2}, y_{2}\right) \ldots q_{s}^{\min \left(f_{s}, y_{s}\right)},, ~}
$$

and

$$
\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c) .
$$

(2) HW 15 .
(3) HW 16 .

Proof of FTA part 1
Let S be the set of all counterexamples to FTA 1.
That is, for $n \in \mathbb{N}$,
$n \in S \Leftrightarrow n \geqslant 2$ and n is not equal to a product of primes.
We want to argue that FTA 1 is true, meaning S is empty.
Suppose, to get a contradiction, that S is not empty. Then, by the Well-Ordering Axiom, there is a smallest element in S.

Call it a.
Since $a \geqslant 2$, we know there is some prime p such that ila.

Thus, $a=p k$ for some $k \in \mathbb{Z}$.
Since a and P_{b} are both positive, so is k. So $k \geqslant 1$.

If $k=1$, then $a=p$ is prime. But then a $\& S$, a contradiction.
If $k>1$, then $k \geqslant 2$ (since $k \in \mathbb{Z}$) but $k<p k=a \quad($ since $p \geqslant 2)$.
So k is smaller than a, the smallest element in S. Thus, $k \notin S$, meaning k is a product of primes.
But then $a=p k$ is a product of primes. So $a \notin S$, a contradiction.

Proof of FTA part 2
Let $P(k)$ be the sentence
"Any integer $n \geqslant 2$ which is equal to a product of k primes "has a unique prime factorization."
We will prove $P(k)$ is tree for all $k \in \mathbb{N}^{P}$ by induction.

Base Case: $k=1$. If n is a product of one prime, then $n=p$
is prime.
If $n=p=q_{1} q_{2} \cdots q_{l}$ is another factorization into primes q_{i}, then plquiqqe, so by the corollary p divides one of the q i.

WLOG, $p l q_{1}$. But p and q_{1} are both prime, so $p=q_{1}$. If $l \geqslant 2$, then
so

$$
\begin{aligned}
& p=p_{2} \cdots q_{l} \\
& 1=q_{2} \cdots q_{l} .
\end{aligned}
$$

But this is impossible, so $l=1$ and

$$
n=p
$$

is the unique prime factorization.

Inductive Step: Let $L \in \mathbb{N}$ and suppose $P(k)$ is true.
Now, let $n \in \mathbb{N}$ be such that

$$
n=p_{1} p_{2} \cdots p_{k+1}
$$

is a product of $k+1$ primes p_{i}

If $n=q_{1} q_{2} \cdots q_{l}$ is another prime factorization, then since $p_{1} l n$, we have $p_{1} \mid\left(q_{1} \cdots q_{\ell}\right)$.

Similar to above, we deduce that P_{1} is equal to one of the q_{i} 's. FLOG, $p_{1}=q_{1}$.

Then $p_{1} p_{2} \cdots p_{k+1}=p_{1} q_{2} \cdots q_{l}$, so

$$
p_{2} \cdots p_{k+1}=q_{2} \cdots q_{l} .
$$

But the left-hand side is a product of k primes, so it has a unique prime factorization by $P(k)$.

Thus, $l=k+1$ and, up to reordering, the primes q_{2}, \ldots, q_{k+1} are exactly the primes p_{2}, \ldots, p_{1+1}.
That is, n has a unique prime factorization.

This proves $P(k+1)$, completing the
ind active step. inductive step.

