Real Numbers
There are two ways we could try to
talk precisely about
$$R$$
.
(D) Construct R from Z
This is possible, but hard!
Step 1: Construct Q.
• Allow division to get fractions
 $\frac{a}{b}$ with $a, b \in \mathbb{Z}$, $b \neq 0$.
• Impose equivalence
 $\frac{a}{b} = \frac{c}{a} \iff ad = bc$
• Check that this is compatible
with \pm, \cdot .
Step 2: Construct R.
• Somehow use the idea that real
numbers are approximated by rationals.

So everything we proved about Z without
using Well-Ordering will also be true
for R.
• these new axioms will give R new
properties that we did not have in Z.
Division and Rational Numbers
Lemma: For all
$$a, b \in R$$
 with $a \neq 0$ and $b \neq 0$,
(a) If $a \cdot b = 1$, then $b = a^{-1}$. [Uniqueness of Mult. Inverses]
(b) $(a^{-1})^{-1} = a$.
(c) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$
(d) $(-a)^{-1} = -a^{-1}$
(e) $a \ge 0$ if and only if $a^{-1} \ge 0$.
In fraction Notation: $ab \in 1 \Rightarrow b = 1$
 $e^{-\frac{1}{(x_0)} = a}$
 $e^{-\frac{1}{(x_0)} = a}$
 $e^{-\frac{1}{(x_0)} = a}$

Def: A real number $x \in \mathbb{R}$ is a rational number if there exist integers $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $x = a \cdot b^{-1}$.

Write
$$x - \frac{2}{b}$$
, and say $\frac{2}{b}$ is a fraction representing x .
The set of all rational numbers is Q .

$$\frac{E_{X}}{3} = \frac{2}{3} \quad and \quad \frac{8}{12} \quad and \quad \frac{10}{15} \quad are \quad all \quad different$$
functions representing the same rational number.
$$\frac{R_{nle}}{b} = \frac{2}{3} \iff a \cdot b^{-1} = c \cdot d^{-1} \iff ad = bc$$

$$\frac{R_{nle}}{b} = \frac{2}{3} \iff a \cdot b^{-1} = c \cdot d^{-1} \iff ad = bc$$

Lemma: For all $x, y \in \mathbb{Q}$,

a)
$$x + y \in \mathbb{Q}$$

b) $x - y \in \mathbb{Q}$
c) $x \cdot y \in \mathbb{Q}$
d) if $y \neq 0$, then $x \cdot y' \in \mathbb{Q}$.

<u>Proof</u>: (a) Since x and y are rational, there exist integers $a, b, c, d \in \mathbb{Z}$ such that $b \neq 0$, $d \neq 0$, and

$$x = \frac{\alpha}{b}$$
, $y = \frac{1}{2}$.

Then

$$x + y = \frac{a}{b} + \frac{c}{d} = a \cdot b^{-1} + c \cdot d^{-1}$$

So
 $(bd) \cdot (x + y) = (bd) (ab^{-1} + cd^{-1})$
 $= ad + bc.$

Thus,

$$x + y = (ad + bc) \cdot (bd)^{-1}$$

 $= \frac{ad + bc}{bd}$.

So
$$x+y = \frac{ad+bc}{bd} \in \mathbb{Q}$$
.

(b)-(d): Hw 13

Lemma: Let
$$x \in \mathbb{Q}$$
. Then there is $m \in \mathbb{Z}$ and $n \in \mathbb{N}$
such that
 $x = \frac{m}{n}$.
Proof: Since x is rational, there exist $a, b \in \mathbb{Z}$ such that
 $x = \frac{a}{b}$.
• If $b > 0$, take $m = a$ and $n = b$.
• If $b < 0$, take $m = -a$ and $n = -b$, since
 $x = \frac{a}{b} = \frac{-a}{-b}$.

Def: A fraction
$$\frac{2}{6}$$
 is in lowest terms if for
every deN, if dla and dlb, then d=1.
That is, I is the only positive divisor a and
b have in common.
Ex: $\frac{2}{3}$ is in lovest terms. $\frac{8}{12}$ is not, because 418 and 4112.

Def: Let
$$x \in \mathbb{Q}$$
. A possible positive denominator
for x is a positive integer $n \in \mathbb{N}$ such that
there exists $m \in \mathbb{Z}$ with $x = \frac{m}{n}$.
Ex: $\frac{2}{3} = \frac{4}{6} = \frac{8}{12} = \frac{20}{30} = \cdots$
so 3, 6, 12, 30 are some of the possible denominators
for this rational number.

Then: Let
$$x \in \mathbb{Q}$$
. There exist $n \in \mathbb{Z}$ and $n \in \mathbb{N}$ such
that $x = \frac{m}{n}$ and $\frac{m}{n}$ is in lowest terms.
Proof: Let S be the set of possible positive
denominators for x.
By the lemma, x has a possible positive denominator,
so S is a non-empty subset of N.
By the Well - Ordening Principle, S has a smallest
element. Call it n.

So
$$x = \frac{m}{n}$$
 for some $m \in \mathbb{Z}$.
Chaim: $\frac{m}{n}$ is in lovest terms.
To prove this, assume it is not. Then there
exists $d \in \mathbb{N}$ such that $d|m$ and $d|n$,
and $d \neq 1$. So there exist $k, l \in \mathbb{Z}$
such that
 $m = dk$ and $n = dl$
Thus,
 $x = \frac{m}{n} = \frac{dk}{dl} = \frac{k}{l}$.
Now, $l \in \mathbb{N}$ [because $n, d \in \mathbb{N}$]
 $\cdot l \leq n$ [because $d \geq 1$]
Thus, l is a possible positive denominator
for x which is smaller than n , a contradiction.