$$\frac{Warm - Up}{Dp}: Prove or disprove:$$

$$If = \frac{a}{b} and = \frac{c}{d} are rational numbers in lonest terms, then = \frac{ad + bc}{bd}$$
is also in lonest terms.

$$\frac{\text{Irrational Numbers}}{\text{Def: Let } x \in \mathbb{R}. \text{ We say } x \text{ is irrational if } x \notin \mathbb{Q}.$$
That is, for all $a, b \in \mathbb{Z}$ with $b \neq 0$, $x \neq \frac{a}{b}$.
To show x is irrational, we assume it is rational and get a contradiction.

Then: For every
$$x \in Q$$
, $x^2 \neq 2$.
This actually only shows $JZ \neq Q$. To prove that
 JZ is a real number, you need to use the
Lenst Upper Bound Property.
Proof: Suppose, to get a contradiction, that there is
some $x \in Q$ such that $x^2 = 2$.
Let $x = \frac{a}{b}$ be a representation of x in
lowest terms, where $a, b \in Z$ and $b \neq 0$.
This means: If $d \in N$ and dia and dib, then $d = 1$.
Equivalently, $gcd(a,b) = 1$.
We have $x^2 = (\frac{a}{b})^2 = 2$, so $\frac{a^2}{b^2} = 2$
Therefore,
 $a^2 = 2b^2$. (*)

Since $b^2 \in \mathbb{Z}$, this shows a^2 is even, and thus a is oven as well. Then a = 2h for some h & Z. Now (*) becomes

$$(2h)^2 = 2b^2$$

 $4L^2 = 2b^2$

We may divide both sides by 2 (or use Multiplicative Cancellation) to get $2k^2 = b^2$.

But this means b² is even, and thus so is b.

Now 21a and 21b, which contradicts $x = \frac{a}{b}$ being in lowest terms. We conclude that there is no such x in Q.

Ex:
$$J\overline{3}$$
, $I\overline{5}$, $J\overline{6}$ are involtional
 $J\overline{11}$ is involtional if $n\in\mathbb{Z}$ is not a parfect square.
 $J\overline{2}$ is involtional
 $T\overline{11}$ and e are involtional
 $Hand$ to prove any of these!
 $T\overline{11}$ Lambert, 1751
 e Euler, 1731
Actually easier to prove more general properties
 $T\overline{11}$ is involtional.
 \mathbb{Q} If $x \in \mathbb{Q}$ and let $y \in \mathbb{R}$ be involtional.
 \mathbb{Q} If $x \neq 0$, then xig is involtional
 $Proof: \mathbb{O}$ Suppose, to get a controdiction, that $x+y \in \mathbb{Q}$.
Since x is rotional, $-x$ is rotional (HW 16).
 $Thus,$
 $y = (x+y) + (-x)$
is the sum of two rational numbers,
so $y \in \mathbb{Q}$, a controdiction.

2 Hw 16.

What about the sum of two irrational numbers?

• It can be rational:
$$\sqrt{2}$$
 is irrational.
So is $-\sqrt{2} = (-1) \cdot \sqrt{2}$.
But $\sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q}$.

The same thing happens with multiplication:

$$\sqrt{2} \cdot \sqrt{2} = 2 \in \mathbb{Q}$$
 $\sqrt{2} \cdot \sqrt{3} = \sqrt{6} \notin \mathbb{Q}$
in in in