Warm $-U_{p}$: Prove or disprove:
If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers in lowest terms, then

$$
\frac{a d+b c}{b d}
$$

is also in lowest terms.

Irrational Numbers
Def: Let $x \in \mathbb{R}$. We say x is irrational if $x \notin \mathbb{Q}$.
That is, for all $a, b \in \mathbb{Z}$ with $b \neq 0, x \neq \frac{a}{b}$.

To show x is irrational, we assume it is rational and get a contradiction.

Let's prove that $\sqrt{2}$ is irrational. We'll use
Fact: Let $n \in \mathbb{Z}$. If n^{2} is even, then n is even. (HoW 9)

The: For every $x \in \mathbb{Q}, x^{2} \neq 2$.
This actually only shows $\sqrt{2} \notin \mathbb{Q}$. To prove that $\sqrt{2}$ is a real number, you need to use the Least Upper Bound Property.

Proof: Suppose, to get a contradiction, that there is some $x \in \mathbb{Q}$ such that $x^{2}=2$.

Let $x=\frac{a}{b}$ be a representation of x in lowest terms, where $a, b \in \mathbb{Z}$ and $b \neq 0$.

This means: If $d \in \mathbb{N}$ and dea and $d l b$, then $d=1$. Equivalently, $\operatorname{gcd}(a, b)=1$.

We have $x^{2}=\left(\frac{a}{b}\right)^{2}=2$, so $\frac{a^{2}}{b^{2}}=2$.
Therefore,

$$
\begin{equation*}
a^{2}=2 b^{2} \tag{*}
\end{equation*}
$$

Since $b^{2} \in \mathbb{Z}$, this shows a^{2} is even, and thus a is even as well.

Then $a=2 k$ for some $k \in \mathbb{Z}$. Now (k) becomes

$$
\begin{aligned}
& (2 k)^{2}=2 b^{2} \\
& 4 k^{2}=2 b^{2} .
\end{aligned}
$$

We may divide both sides by 2 (or use Multiplicative Cancellation) to get

$$
2 k^{2}=b^{2}
$$

But this means b^{2} is even, and thus so is 6 .

Now 21a and 216, which contradicts $x=\frac{a}{b}$ being in lowest terms.

We conclude that there is no such x in \mathbb{Q}.

Ex: $\cdot \sqrt{3}, \sqrt{5}, \sqrt{6}$ are irrational

- \sqrt{n} is irrational if $n \in \mathbb{Z}$ is not a perfect square.
- $\sqrt[3]{2}$ is irrational
- π and e are irrational

Hard to prove any of these!

- π Lambert. 1761
- E Euler, 1731

Actually easier to prove mare general properties:

Thu: Let $x \in \mathbb{Q}$ and let $y \in \mathbb{R}$ be irrational.
(1) $x+y$ is irrational.
(2) If $x \neq 0$, then $x \cdot y$ is irrational

Proof: (1) Suppose, to get a contradiction, that $x+y \in \mathbb{Q}$. Since x is rational, $-x$ is rational (HW 16).
Thus,

$$
y=(x+y)+(-x)
$$

is the sum of two rational numbers, so $y \in \mathbb{Q}$, a contradiction.
(2) HW 16 .

What about the sum of two irrational numbers?

- If can be rational $: \sqrt{2}$ is irrational.

So is $-\sqrt{2}=(-1) \cdot \sqrt{2}$.
But $\sqrt{2}+(-\sqrt{2})=0 \in \mathbb{Q}$.

- It can be irrational: $\sqrt{2}+\sqrt{2}=2 \sqrt{2}$ is irrational

The same thing happens with multiplication:

$$
\underset{i m}{\sqrt{2} \cdot \sqrt{2}}=2 \in \mathbb{Q} \quad \sqrt{2} \cdot \sqrt{3}=\sqrt{6} \notin \mathbb{Q}
$$

