Last time: JZ is irrational.
Here is a vast generalization:
For each n & N, either
· Jn & N
or
· Jn is irrational.
This follows immediately from the
following
Thm (Example 4.52 in text):
If x & and x² & Z, then x & Z.
Last x = Jn to prove the boxed statement.
Proof: Suppose x & and x² & Z.
Write x =
$$\frac{a}{b}$$
 in lovest terms with a & Z
and $b \in N$.

Our goal is to show b=1, so x=a & Z. Let's assume $b \neq 1$ and get a contradiction. Since $b \neq l$ and $b \in N$, we have b > l. Thus, there is some prime p such that $p \mid b$. Now, $x^2 = \frac{a^2}{b^2} = n$ for some $n \in \mathbb{Z}$. $a^2 = b^2 n = b(bn).$ That is, $b|a^2$. By transitivity of divisibility, $p|a^2$ also. But then pla by the "Theorem on Division by a Prime." So pla and plb, contradicting the fact that $\frac{a}{b}$ is in lowest terms Therefore, we conclude b=1 and thus x ∈ Z. Sets

"<u>Def</u>": A <u>set</u> is an unordered collection of objects, called <u>elements</u> of the set. Actual definition is a list of axioms One may to describe a set: list its elements inside braces. $E_x: \{1,2,3\}, \{red, blue\}, \{0, \$, \bigstar, \Box\}$ are sets Important notes: • The elements in a set are <u>unordered</u>. **٤**1,2,3} ٤1,3,2} ٤2,1,3} ٤2,3,1} ٤3,1,2} ٤3,2,1} are six mays of nothing the same set. • The elements are <u>distinct</u> - no object can appear more than once. If we write **٤ ا, ا, ا**, 2, 2, 2, 2, 2, 3, 3 this menns the set \$1,2,3}.

Sets can have sets as elements.

 $E_{X}: A = \begin{cases} \{1, 2\}, \{red, blue\}, \{s\}\} \text{ is a set with} \\ \text{Haree elements, two of which are sets} \\ \text{Hemselves.} \\ \{1, 2\} \in A \\ I \notin A \end{cases}$