More about Sets
Important notes:
-The elements in a set are unordered.
So

$$
\{1,2,3\},\{1,3,2\},\{2,1,3\},\{2,3,1\},\{3,1,2\},\{3,2,1\}
$$ are six mays of uniting the same set.

-The elements are distinct - no object can appear more than once. If we unite

$$
\{1,1,1,2,2,2,2,2,2,3,3\},
$$

this means the set $\{1,2,3\}$.

Sets can have sets as elements.

Ex: $A=\{\{1,2\},\{$ red,, 16 ne $\}, \$\}$ is a set with three elements, two of which are sets themselves.

$$
\begin{array}{r}
\{1,2\} \in A \\
\quad \notin A
\end{array}
$$

Def: The empty set is the set with no elements. It is denoted $\phi$.
$x \in \varnothing$ is false for every $x$.

Other ways to specify sets
In words: . Let $B$ be the set whose elements are the first five prime numbers
so $B=\{2,3,5,7,11\}$

- Let $\mathbb{R}_{>0}$ be the set of all positive real numbers.

By patterns: $E=\{2,4,6,8, \ldots\}$
( $E$ is the set of positive even numbers)

- $P=\{2,3,5,7,11, \ldots\}$
$(P$ is the set of all prime numbers)
These first two methods are somewhat limited.

Set-Builder Notation: If $P(x)$ is a sentence, then

$$
\left\{\left.x\right|_{\uparrow} P(x)\right\} \quad \text { or } \quad\{x: P(x)\}
$$

"Such that"
is the set of all $x$ such that $P(x)$ is true.

If $A$ is a set, then

$$
\{x \in A \mid P(x)\}
$$

is the set of all $x$ such that $x \in A$ and $P(x)$ is true. ( $x$ is a bound variable)

- $E=\{n \mid n \in \mathbb{N}$ and $n$ is even $\}$.

Also, $E=\{n \in \mathbb{N} \mid n$ is even $\}$.
Also, $E=\{n \in \mathbb{N}: 2 \ln \}$.

- $\mathbb{R}_{>0}=\{x \in \mathbb{R} \mid x>0\}$.

Also, $\mathbb{R}_{>0}=\{y \in \mathbb{R} \mid y>0\}$

Transformation notation: If $A$ is a set and $f$ is some function defined
on $A$, then

$$
\{f(x) \mid x \in A\}
$$

is the set of all objects $f(x)$ obtained from all $x \in A$.

$$
\begin{aligned}
E & =\{2 n \mid n \in \mathbb{N}\} \\
\cdot S & =\left\{n^{2} \mid n \in \mathbb{N}\right\}<\text { Transformation } \\
& =\left\{\begin{array}{l}
\left.m \mid \text { there exists } n \in \mathbb{N} \text { such that } n^{2}=m\right\} \\
\text { Set-Builder }
\end{array}\right.
\end{aligned}
$$

Ex: Let $S=\left\{n^{2} \mid n \in \mathbb{N}\right\}$ be the set of (positive) squares and $C=\left\{n^{3} \mid n \in \mathbb{N}\right\}$ the set of (positive) cubes.

Define $A=\{x+y \mid x \in S$ and $y \in C\}$.
Then
In words: $A$ is the set of integers which can be written as the sum of a positive square and a positive cube.

Pattern: $A=\{2,5,9,10,12,17,24, \ldots\}$
Set-Builder:
$A=\left\{n \in \mathbb{N} \mid\right.$ there exist $a, b \in \mathbb{N}$ such that $\left.n=a^{2}+b^{3}\right\}$

Subsets
Def: Let $A$ and $B$ be sets. We say $A$ is a subset of $B$, written $A \subseteq B$, if $x \in A$ implies $x \in B$.

That is, $A \subseteq B$ means every element of $A$ is also an element of $B$.

Can write as $(\forall x \in A)(x \in B)$

$$
\text { or }(\forall x)[x \in A \Rightarrow x \in B]
$$

Ex: $\cdot\{2,3,5\} \subseteq\{1,2,3,4,5\}$

- $\mathbb{N} \subseteq \mathbb{Z}$
$\cdot \mathbb{Z} \subseteq \mathbb{Q}$
- $\mathbb{Q} \subseteq \mathbb{R}$

Ex: Any time we use set-builder notation to

$$
A=\{x \in B \mid P(x)\},
$$

we have $A \subseteq B$.

Tho: For every set $A, \varnothing \subseteq A$.
Proof: The sentence $x \in \varnothing$ is always false. Thus,

$$
x \in \varnothing \Rightarrow x \in A
$$

is always true, so $\varnothing \subseteq A$.

Thu: For every set $A, A \subseteq A$.
Proof: The sentence

$$
x \in A \Rightarrow x \in A
$$

is time for all $x$, so $A \subseteq A$.

Def: Let $A$ and $B$ be sets. We say $A=B$ if $A \subseteq B$ and $B \subseteq A$.

So to prove $A=B$, we usually have to prove 2 things:

$$
\begin{array}{ll}
-A \leqslant B & (x \in A \Rightarrow x \in B) \\
-B \leqslant A & (x \in B \Rightarrow x \in A)
\end{array}
$$

The: Let $A$ and $B$ be sets. Then $A=B$ if and only if $(x \in A \Leftrightarrow x \in B)$ for all $x$.
Proof: $A=B$ is logically equivalent to

$$
\begin{aligned}
& \begin{aligned}
&(A \subseteq B) \wedge(B \subseteq A) \\
& \equiv(\forall x)(x \in A \Rightarrow x \in B) \wedge(\forall x)(x \in B \Rightarrow x \in A) \\
& \equiv(\forall x)[(x \in A \Rightarrow x \in B) \wedge(x \in B \Rightarrow x \in A)] \\
& \equiv(\forall x)[x \in A \Leftrightarrow x \in B] . \\
& \text { since }[(\forall x) P(x)] \wedge[(\forall x) Q(x)] \equiv(\forall x)[P(x) \wedge Q(x)]
\end{aligned}
\end{aligned}
$$

Ex: Let's prove

$$
\underbrace{\left\{x \in \mathbb{Z} \mid x^{2}=1\right\}}_{=A}=\frac{\{1,-1\}}{=B}
$$

We must prove $A \subseteq B \quad(x \in A \Rightarrow x \in B)$ and $B \leqslant A \quad(x \in B \Rightarrow x \in A)$.

Prof: ( $\subseteq)$ Let $x \in \mathbb{A}$. Then $x \in \mathbb{Z}$ and

$$
\begin{aligned}
x^{2}=1 . & \text { So } \\
x^{2}-1 & =0 \\
(x-1)(x+1) & =0
\end{aligned}
$$

Thus, $x=1$ or $x=-1$, so $x \in B$.
$(\geq)$ Let $x \in B$. Then $x=1$ or $x=-1$. Either way, $x \in \mathbb{Z}$ and $x^{2}=1$, so $x \in A$.

Def: Let $A$ and $B$ be sets. We say $A$ is a proper subset of $B$, written $A \subseteq B$, if $A \subseteq B$ and $A=B$.

So $A \subsetneq B$ means

$$
(\forall x)(x \in A \Rightarrow x \in B) \wedge(\exists y)\left(y \in B \wedge y^{*} A\right) \text {. }
$$

Warning: Some people use $c$ instead of $\subseteq$. $c$ does not mean proper subset.

Warning: $\epsilon$ vs. $\in$
Ex: $\quad \mid \in\{1,2,3\}$ is true
$\{1\} \in\{1,2,3\}$ is false
$\{1\} \subseteq\{1,2,3\}$ is tine
$1 \subseteq\{1,2,3\}$ makes no sense

Ex: $\varnothing \leqslant \varnothing \quad$ (because $\varnothing \leqslant A$ for every set $A$ ) but $\varnothing \notin \varnothing$ (because $x \in \varnothing$ is always false)

Ex: Consider $\{\varnothing\}$, the set whore only element is $\varnothing$. Then $\phi \in\{\phi\}$ and $\varnothing \leqslant\{\varnothing\}$.

