Ex: Let neW. A set with n elements has exactly 2ⁿ subsets. Why?

Proof: (1) we proved last time.
(2) is our definition of set equality.
(3): Suppose
$$A \in B$$
 and $B \in C$. This means
 $x \in A \Longrightarrow x \in B$ is the for every x
and
 $x \in B \Longrightarrow x \in C$ is the for every x .
To prove $A \in C$, suppose $x \in A$ for some x .
Then $x \in B$ because $A \in B$. Thus, $x \in C$
because $B \in C$.

Therefore, $x \in A \Rightarrow x \in C$ for every x, so $A \subseteq C$.

$$E_{\mathbf{x}}: Let E = \{n \in \mathbb{N} \mid n \text{ is even} \}$$

= $\{2, 4, 6, 8, ... \}$
and
 $P = \{p \in \mathbb{N} \mid p \text{ is prime} \}$
= $\{2, 3, 5, 7, 11, ... \}$
• E U P = $\{n \in \mathbb{N} \mid n \text{ is even or prime} \}$
= $\{2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, ... \}$
• E $\cap P = \{n \in \mathbb{N} \mid n \text{ is even and prime} \}$
= $\{2\}$
• E $\cap P = \{n \in \mathbb{N} \mid n \text{ is even and prime} \}$
= $\{2\}$
• E $\cap P = \{2, 6, 8, 10, ... \}$
• P $\cap E = \{3, 5, 7, 11, ... \}$
• N $\cap E = \{n \in \mathbb{N} \mid n \text{ is odd} \}$
= $\{1, 3, 5, 7, ... \}$
• E $\cap \mathbb{N} = \emptyset$

Proof: (a)
$$X \notin A \cup B \iff \neg (x \in A \cup B)$$

 $\iff \neg [(x \in A) \lor (x \in B)]$
 $\iff \neg (x \in A) \land \neg (x \in B)$ DeMorgan
 $\iff (x \notin A) \land (x \notin B).$
(b) is similar, using the other DeMorgan Law.

 $\underline{E_{x}}$: $A \cap B \subseteq A$, $A \cap B \subseteq B$ (HW 18)

$$\frac{\text{Thm}(\text{DeMorgan Laws for sets}):}{\text{Let A, B, and S be sets. Then}}$$
(i) $S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B).$
(ii) $S \setminus (A \cap B) = (S \setminus A) \cup (S \setminus B).$

Then (Associativity of U and
$$\cap$$
):
Let A, B, and C be sets. Then
(i) (A U B) UC = A U (BUC)
(ii) (A \cap B) \cap C = A \cap (B \cap C).