Warm-Up: List all subsets of

- $\{1\}$
- $\{1,2\}$
- $\{1,2,3\}$

Ex: Let $n \in \mathbb{N}$. A set with n elements has exactly 2^{n} subsets. Why?

The: (1) For all sets $A, A \subseteq A$. [Reflexive]
(2) For all sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$. [Antisymmetric]
(3) For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. [Transitive]

Note: S and divisibility have these same 3 properties!

Proof: (1) we proved last time.
(2) is our definition of set equality.
(3): Suppose $A \subseteq B$ and $B \subseteq C$. This means $x \in A \Rightarrow x \in B$ is time for every x and $x \in B \Rightarrow x \in C$ is tine for exec x.

To prove $A \subseteq C$, suppose $x \in A$ for some x. Then $x \in B$ because $A \leqslant B$. Thus, $x \in C$ because $B \subseteq C$.

Therefore, $x \in A \Rightarrow x \in C$ for every x, so $A \leqslant C$.

Algebra of Sets
Def: Let A and B be sets.
(1) The union of A and B is the set

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} \text {. }
$$

(2) The intersection of A and B is the set

$$
A \cap B=\{x \mid \quad x \in A \text { and } x \in B\} \text {. }
$$

(3) The relative complement of B in A is the set

$$
A \backslash B=\{x \mid x \in A \text { and } x \notin B\} \text {. }
$$

${ }^{\tau}$ Also called set difference
Pictures:

$A \cup B$

$A \cap B$

ArB

Ex: Let $E=\{n \in \mathbb{N} \mid n$ is ever $\}$

$$
=\{2,4,6,8, \ldots\}
$$

and

$$
\begin{aligned}
P & =\{p \in \mathbb{N} \mid p \text { is prime }\} \\
& =\{2,3,5,7,11, \ldots\}
\end{aligned}
$$

- $E \cup P=\{n \in \mathbb{N} \mid n$ is even or prime $\}$

$$
=\{2,3,4,5,6,7,8,10,11,12,13,17, \ldots\}
$$

- $E \cap P=\{n \in \mathbb{N} \mid n$ is even and prime $\}$

$$
=\{2\}
$$

- $E \backslash P=\{4,6,8,10, \ldots\}$
- $P \backslash E=\{3,5,7,11, \ldots\}$
- $\mathbb{N} \backslash E=\{n \in \mathbb{N} \mid n$ is ald $\}$

$$
=\{1,3,5,7, \ldots\}
$$

- $E \backslash \mathbb{N}=\varnothing$

Many theorems from logic translate directly to theorems about sets.

Lemma: Let A and B be sets. Then for any object x,
(a) $x \notin A \cup B$ if and only if $x \notin A$ and $x \notin B$.
(b) $x \notin A \cap B$ if and only if $x \notin A$ or $x \notin B$.

Proof: (a) $x \notin A \cup B \Leftrightarrow \neg(x \in A \cup B)$

$$
\begin{aligned}
& \Leftrightarrow \neg[(x \in A) \vee(x \in B)] \\
& \Leftrightarrow \neg(x \in A) \wedge \neg(x \in B) \quad \text { DeMorgan } \\
& \Leftrightarrow(x \notin A) \wedge(x \notin B) .
\end{aligned}
$$

(b) is similar, using the other DeMorgan Law.

Ex: $A \cap B \subseteq A, \quad A \cap B \in B \quad(H W 18)$

Thu (DeMorgan Laws for sets):
Let A, B, and S be sets. Then
(i) $S \backslash(A \cup B)=(S \backslash A) \cap(S \backslash B)$.
(ii) $S \backslash(A \cap B)=(S \backslash A) \cup(S \backslash B)$.

Proof: (i) We'll show both containments.
(C) : Let $x \in S \backslash(A \cup B)$. Then $x \in S$ and $x \notin A \cup B$. By the Lemma, $x \notin A$ and $x \notin B$. So $x \in S \backslash A$ and $x \in S \backslash B$. Thus, $x \in(S \backslash A) \cap(S \backslash B)$.
(\supseteq) Let $x \in(S \backslash A) \cap(S \backslash B)$. Then $x \in S V A$ and $x \in S \backslash B$. So $x \in S$ and $x \notin A$, and $x \in S$ and $x \notin B$. Since $x \notin A$ and $x \notin B$, we have $x \notin A \cup B$ by the Lemma. Thus, because $x \in S$, we have $x \in S \backslash(A \cup B)$.
(ii) is similar.

Similarly, one can prove the following.
The (Commutativity of U and n):
Let A and B be sets. Then
(i) $A \cup B=B \cup A$
(ii) $A \cap B=B \cap A$.

The (Associativity of u and n):
Let A, B, and C be sets. Then
(i) $(A \cup B) \cup C=A \cup(B \cup C)$
(i) $(A \cap B) \cap C=A \cap(B \cap C)$.

The (Distributive Laws for sets):
Let A, B, and S be sets. The,
(i) $S \cap(A \cup B)=(S \cap A) \cup(S \cap B)$
(ii) $S \cup(A \cap B)=(S \cup A) \cap(S \cup B)$

