Warm-Up: Let A	and B	be sets. Show	that
A ∈ A∪B	and	B ≤ A ∪ B.	

HW 18: You showed ANBEA and ANBEB.

$$\frac{\text{Recall}: x \in A \cup B \iff (x \in A) \lor (x \in B)}{x \in A \cap B \iff (x \in A) \land (x \in B)}$$

Note: The book writes UA for UA and NA for AA.

Ex: Let
$$A = \{ \{1, 2\}, \{2, 3\}, \{2, 5, 6\} \}$$
. Then
 $\bigcup_{A \in A} A = \{ 1, 2\} \cup \{2, 3\} \cup \{2, 5, 6\} = \{ 1, 2, 3, 5, 6\}$
and
 $\bigcap_{A \in A} A = \{ 1, 2\} \cap \{2, 3\} \cap \{2, 5, 6\} = \{ 2\}.$

E_x: Let
$$A_n = \{k \in N \mid k \ge n\}$$
 So $A_1 = \{1, 2, 3, ...\} = IN$
 $= \{n, n+1, n+2, ...\}$
 $A_2 = \{2, 3, 4, ...\}$
 $= \{3, 4, 5, ...\}$

Set
$$A = \{A_n \mid n \in IN\}$$

= $\{A_1, A_2, A_3, \dots\}$. A set with infinitely many
clements, each of which is a set

$$U A = \bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup A_3 \cup \dots = N.$$

$$Proof: Let x \in \bigcup_{n=1}^{\infty} A_n. \text{ Then } x \in A_n \text{ for some } n.$$

$$B_n I = A_n \subseteq N, \text{ so } x \in N. \text{ Thus, } \bigcup_{i=1}^{\infty} A_i \subseteq N.$$

$$On \text{ the other hand, let } x \in M. \text{ Since } N = A_1, x \in \bigcup_{n=1}^{\infty} A_n. \text{ Thus, } N \subseteq \bigcup_{n=1}^{\infty} A_n.$$

$$\bigcap_{A \in \mathcal{L}} A = \bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap A_3 \cap \cdots = \varphi.$$

Proof: Suppose
$$x \in \bigcap_{n=1}^{\infty} A_n$$
. Then $x \in A_n$ for
every n. In particular, $x \in A_1 = N$.
But then $x \notin A_{x+1}$, which contradicts
 $x \in A_n$ for all $n \in N$.
So $\bigcap_{n=1}^{\infty} A_n$ must be empty.

Ex: Let $B_n = [\frac{1}{n}, 2]$ for each $n \in \mathbb{N}$. B = [1, 2]

$$B_{1} = [1, 2]$$

$$B_{2} = [\frac{1}{2}, 2]$$

$$B_{3} = [\frac{1}{3}, 2]$$

$$\vdots$$

$$B_{3} = [\frac{1}{3}, 2]$$

$$B_{3} = [\frac{1}{3}, 2]$$

Then $\bigcap_{i=1}^{n} B_n = [1,2].$ Proof: Left to you. And \hat{U} $B_n = (0, 2]$. Proof: Each $B_n \in (0,2]$, so $\bigcup_{n=1}^{\infty} B_n \in (0,2]$ My? Now, let $x \in (0,2]$. By the Archimedean Property (Bonus Problem #6), there exists $m \in \mathbb{N}$ such that $\frac{1}{m} < x$.

> Thus, $x \in B_m = [\frac{1}{m}, 2]$, and so $x \in \bigcup_{n=1}^{\infty} B_n$. That is, $(0, 2] \in \bigcup_{n=1}^{\infty} B_n$.

Ex: Similarly, if
$$C_n = (-\frac{1}{n}, 2]$$
, then
 $\bigcup_{n=1}^{\infty} C_n = (-1, 2]$ and $\bigcap_{n=1}^{\infty} C_n = [0, 2]$.

Thim: Let A be a non-empty set of sets.
Let A. e.A. Then
$$\bigcap_{A \in \mathcal{A}} A \subseteq A_0 \subseteq \bigcup_{A \in \mathcal{A}} A$$
.
Proof: O Let $x \in \bigcap_{A \in \mathcal{A}} A$. Then for all $A \in \mathcal{A}$, $x \in \mathcal{A}$.
In particular, $x \in \mathcal{A}_0$. Thus, $\bigcap_{A \in \mathcal{A}} A \in \mathcal{A}_0$.
© Let $x \in \mathcal{A}_0$. Then there exists some $A \in \mathcal{A}$
such that $x \in \mathcal{A}$, because we could take $A = \mathcal{A}_0$.
This means $x \in \bigcup_{A \in \mathcal{A}} A$. Therefore, $\mathcal{A}_0 \subseteq \bigcup_{A \in \mathcal{A}} A$.

$$\frac{T_{hm}}{(Generalized DeMorgan Laws for sets):}$$
Let S be a set and let A be a set of sets.
Then
(i) $S \setminus (\bigcup_{A \in A} A) = \bigcap_{A \in A} (S \setminus A)$
(ii) $S \setminus (\bigcap_{A \in A} A) = \bigcup_{A \in A} (S \setminus A)$.

$$\frac{\operatorname{Thm}}{\operatorname{Let}} (Generalized Distributive Lows for sets):
Let S be a set and let A be a set of sets.
Then

(i) S n (U A) = U (SnA)

(ii) S U ($\bigcap_{A \in A} A$) = $\bigcap_{A \in A} (S \cup A)$.$$

<u>Ex</u>: $A = \{1,2\}$. Then $P(A) = \{ \emptyset, \{1\}, \{2\}, \{1,2\} \}$.

If A has a elements, then P(A) has 2" elements.

What do ne mean by "in order"?

Fundamental Property:
$$(a,b) = (c,d)$$
 if and only if $a=c$ and $b=d$.

Ex: If
$$a \neq b$$
, then $(a,b) \neq (b,a)$.
• For any a , (a,a) is a perfectly fine ordered pair.

Aside: There is an "implementation" of ordered pairs as sets. To do this, define $(a, b) = \{\{a\}, \{a, b\}\}\}$. Then you can prove that $(a, b) = (c, d) \in a = c$ and b = d.