Warm-Up: Let A and B be sets. Show that

$$
A \subseteq A \cup B \quad \text { and } \quad B \subseteq A \cup B \text {. }
$$

HW 18: You showed $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

Recall:

$$
\begin{aligned}
& x \in A \cup B \Leftrightarrow(x \in A) \vee(x \in B) \\
& x \in A \cap B \Leftrightarrow(x \in A) \wedge(x \in B)
\end{aligned}
$$

Sets of sets
Notation: We'll often use a script letter to denote a set of sets - ie. a set, all of whose elements are sets.

Def: Let A be a set of sets. Then

$$
\begin{aligned}
& \text { - } \bigcup_{A \in \mathcal{A}} A=\{x \mid(\exists A \in \mathcal{A})(x \in A)\} \\
& \text { - } \bigcap_{A \in A} A=\{x \mid(\forall A \in A)(x \in A)\}
\end{aligned}
$$

Note: The book unites $\cup A$ for $\bigcup_{A \in \mathcal{A}} A$ and $\cap \lambda$ for $\bigcap_{A \in \lambda} A$.

Ex: Let $A=\{\{1,2\},\{2,3\},\{2,5,6\}\}$. Then
and

$$
\bigcup_{A \in \mathcal{A}} A=\{1,2\} \cup\{2,3\} \cup\{2,5,6\}=\{1,2,3,5,6\}
$$

$$
\bigcap_{A \in A} A=\{1,2\} \cap\{2,3\} \cap\{2,5,6\}=\{2\} .
$$

Ex: Let $A_{n}=\{k \in \mathbb{N} \mid k \geqslant n\}$
So

$$
=\{n, n+1, n+2, \ldots\}
$$

Set

$$
\begin{aligned}
A & =\left\{A_{n} \mid n \in \mathbb{N}\right\} \\
& =\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}
\end{aligned}
$$

A set with infinitely many cements, each of which is a set

Then

$$
\bigcup_{A \in A} A=\bigcup_{n=1}^{\infty} A_{n}=A_{1} \cup A_{2} \cup A_{3} \cup \cdots=\mathbb{N} .
$$

Proof: Let $x \in \bigcup_{n=1}^{\infty} A_{n}$. Then $x \in A_{n}$ for some n. But $A_{n} \subseteq \mathbb{N}$, so $x \in \mathbb{N}$. Thus, $\bigcup_{i=1}^{\infty} A_{i} \subseteq \mathbb{N}$.
On the other hand, let $x \in \mathbb{N}$. Since $\mathbb{N}=A_{1}, \quad x \in \bigcup_{n=1}^{\infty} A_{n}$. Thus, $\mathbb{N} \subseteq \bigcup_{n=1}^{\infty} A_{n}$.
Also,

$$
\bigcap_{A \in \mathcal{L}} A=\bigcap_{n=1}^{\infty} A_{n}=A_{1} \cap A_{2} \cap A_{3} \cap \cdots=\varnothing
$$

Proof: Suppose $x \in \bigcap_{n=1}^{\infty} A_{n}$. Then $x \in A_{n}$ for every n. In particular, $x \in A_{1}=\mathbb{N}$. But then $x \notin A_{x+1}$, which contradicts $x \in A_{n}$ for all $n \in \mathbb{N}$.

So $\bigcap_{n=1}^{\infty} A_{n}$ must be empty.

Ex: Let $B_{n}=\left[\frac{1}{n}, 2\right]$ for each $n \in \mathbb{N}$.

$$
\begin{array}{lc:c}
B_{1}=[1,2] & 0 & 2 \\
B_{2}=\left[\frac{1}{2}, 2\right] & 0 & 2 \\
B_{3}=\left[\frac{1}{3}, 2\right] & 0 & 2
\end{array}
$$

Then $\bigcap_{i=1}^{\infty} B_{n}=[1,2]$.
Proof: Left to you.
And $\bigcup_{i=1}^{\infty} B_{n}=(0,2]$.

Now, let $x \in(0,2]$.
By the Archimedean Property (Bonus Problem \#6), there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<x$.

Thus, $x \in B_{m}=\left[\frac{1}{m}, 2\right]$, and so $x \in \bigcup_{n=1}^{\infty} B_{n}$. That is, $(0,2] \subseteq \bigcup_{n=1}^{\infty} B_{n}$.

Ex: Similarly, if $C_{n}=\left(-\frac{1}{n}, 2\right]$, then

$$
\bigcup_{n=1}^{\infty} C_{n}=(-1,2] \text { and } \bigcap_{n=1}^{\infty} C_{n}=[0,2] \text {. }
$$

Thu: Let A be a non-empty set of sets. Let $A_{0} \in \mathcal{A}$. Then

$$
\bigcap_{A \in R} A \subseteq A_{0} \subseteq \underset{(2)}{\subseteq} \bigcup_{A \in A} A
$$

Proof : (1) Let $x \in \bigcap_{A \in R} A$. Then for all $A \in A, x \in A$. In particular, $x \in A_{0}$. Thus, $\bigcap_{A \in A} A \subseteq A_{0}$.
(2) Let $x \in A$. Then there exists some $A \in \mathcal{A}$ such that $x \in A$, because ne could take $A=A_{0}$. This means $x \in \bigcup_{A \in A} A$. Therefore, $A_{0} \subseteq \bigcup_{A \in A} A$.

Thu (Generalized DeMorgan Laws for sets): Let S be a set and let A be a set of sets.
Then
(i) $S \backslash\left(\bigcup_{A \in A} A\right)=\bigcap_{A \in A}(S \backslash A)$
(ii) $S \backslash\left(\bigcap_{A \in A} A\right)=\bigcup_{A \in A}(S \backslash A)$.

The (Generalized Distributive Lows for sets):
Let S be a set and let A be a set of sets.
Then
(i) $\operatorname{Sn}\left(\bigcup_{A \in A} A\right)=\bigcup_{A \in A}(S \cap A)$
(ii) $S \cup\left(\bigcap_{A \in A} A\right)=\bigcap_{A \in A}(S \cup A)$.

The Power Set
Def: Let A be a set. The power set of A, denoted $P(A)$ is the set of all subsets of A.

$$
P(A)=\{S \mid S \subseteq A\} \text {. }
$$

Ex: $A=\{1,2\}$. Then $P(A)=\{\phi,\{13,\{2\},\{1,2\}\}$.

If A has n elements, then $P(A)$ has 2^{n} elements.

Ordered Pairs
"Def": An ordered pair is a list of two objects in order.
If a and b are objects, then (a, b) denotes the ordered pair with first entry a and second entry 6 .

What do ne mean by "in order"?

Fundamental Property: $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.

Ex: - If $a \neq b$, then $(a, b) \neq(b, a)$.

- For any $a,(a, a)$ is a perfectly fine ordered pair.

Compare with sets:

$$
\begin{aligned}
& \text { - }\{a, b\}=\{b, a\} \\
& \text { - }\{a, a\}=\{a\}
\end{aligned}
$$

Aside: There is an "implementation" of ordered pairs as sets. To do this, define

$$
(a, b)=\{\{a\},\{a, b\}\} .
$$

Then you can prove that $(a, b)=(c, d) \Leftrightarrow a=c$ and $b=d$.

