Cartesian Products
Def: Let A and B be sets. The Cartesian product of A and B is the set

$$
A \times B=\{(a, b) \mid a \in A, b \in B\} .
$$

Ex: Let $A=\{a, b, c\}$ and $B=\{2,4\}$. Then

$$
A \times B=\{(a, 2),(a, 4),(b, 2),(b, 4),(c, 2),(c, 4)\} .
$$

We unite $A^{2}=A \times A$.

Ex: $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y) \mid x \in \mathbb{R}$ and $y \in \mathbb{R}\}$
is the usual Cartesian plane.
Ex:

$$
\begin{aligned}
\mathbb{N} \times \mathbb{Z} & =\{(m, n) \mid m \in \mathbb{N}, n \in \mathbb{Z}\} . \\
\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z} & =\{(m, n) \mid m \in \mathbb{Z}, n \in \mathbb{Z}\} .
\end{aligned}
$$

Picture:

Note that $\mathbb{N} \times \mathbb{Z} \subseteq \mathbb{Z}^{2} \subseteq \mathbb{R}^{2}$.

For sets A, B, C, we can similarly define

More generally, we can define the Cartesian product of n sets to be the set of ordered n-tuples.

$$
\begin{aligned}
E x: & \mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\} . \\
& \mathbb{R}^{n}=\underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \text { each } x_{:} \in \mathbb{R}\right\} .
\end{aligned}
$$

Functions
Def: Let A and B be sets. A function $f: A \rightarrow B$ is a rule which associates to each $x \in A$ an element $f(x) \in B$.

- A is the domain of f, written $A=\operatorname{Dom}(f)$. (the set of all valid inputs)
We might say f is a function on A.
- B is the target or codomain of f. (a set containing all possible outputs)
- For $x \in A, f(x)$ is the value of f at x. [f is the function, $f(x)$ is an element of B]
-The word map is a synonym for function.

Note that to define a function, re must specify both the domain and the target.

Def: Let $f: A \rightarrow B$ be a function. The range of f, denoted $R_{n g}(f)$, is the set

$$
\operatorname{Rng}(f)=\{y \in B \mid f(x)=y \text { for some } x \in A\} \text {. }
$$

Note: $R_{n g}(f) \subseteq B$ automatically.
Informally, $R_{n g}(f)$ is the set of all function values.

Ex: Let $A=\{a, b, c, d\}$. Define $f: A \rightarrow \mathbb{Z}$ by $f(a)=2, \quad f(b)=3, \quad f(c)=1, \quad f(d)=1$.

When the domain is finite, like it is here, we can represent the function as a table.

$$
\operatorname{Rng}(f)=\{1,2,3\} \leq \mathbb{Z}
$$

Ex: Consider the functions

$$
\begin{array}{lll}
f: \mathbb{R} \rightarrow \mathbb{R} & \text { given by } & f(x)=x^{2} \\
g: \mathbb{R} \rightarrow[0, \infty) & & g(x)=x^{2} \\
h: \mathbb{R} \rightarrow[-2, \infty) & & h(x)=x^{2} \\
i:[0, \infty) \rightarrow[0, \infty) & & i(x)=x^{2} \\
j:[1,2] \rightarrow \mathbb{R} & & j(x)=x^{2} \\
k:[1,2] \rightarrow[1,4] & & k(x)=x^{2}
\end{array}
$$

Q: Why cant we add

$$
l:[1,3] \rightarrow[1,5] \quad \text { given by } \quad l(x)=x^{2}
$$ to this list?

Def: We say two functions f and g are equal if
(1) $\operatorname{Dom}(f)=\operatorname{Dom}(g)$
(2) For even g $x \in \operatorname{Dom}(f), \quad f(x)=g(x)$.

In this case we write $f=g$. ${ }^{\text {equality of values }}$
T equality of

Ex: In the previous example, we have 3 functions up to equality: $f=g=h$, i, and $j=k$.

Ex: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$. Then $\operatorname{Rng}(f)=[0, \infty)$.

Proof: (\subseteq Let $y \in R_{n y}(f)$. Then $y \in \mathbb{R}$ and $y=f(x)$ for some $x \in \mathbb{R}$. Thus $y=x^{2} \geq 0$, So $y \in[0, \infty)$.
(2) Let $y \in[0, \infty)$. Then $y \geq 0$, so $\sqrt{y} \in \mathbb{R}$. Set $x \in \sqrt{y}$. We have

$$
f(x)=x^{2}=(\sqrt{y})^{2}=y
$$

which shows that $y \in[0, \infty)$.

