Cartesian Products

Def: Let A and B be sets. The Cartesian product of A and B is the set

A x B = { (a,b) | a & A, b & B}.

Ex: Let $A = \{a, b, c\}$ and $B = \{2, 4\}$. Then $A \times B = \{(a, 2), (a, 4), (b, 2), (b, 4), (c, 2), (c, 4)\}$.

We write $A^2 = A \times A$.

Ex: R2 = RxR = {(x,y) | xeR and yeir}
is the usual <u>Cartesian plane</u>.

Ex: $N \times Z = \{(m,n) \mid m \in \mathbb{N}, n \in \mathbb{Z} \}$. $Z^2 = Z \times Z = \{(m,n) \mid m \in \mathbb{Z}, n \in \mathbb{Z} \}$.

Picture!

Note that $N \times \mathbb{Z} \subseteq \mathbb{Z}^2 \subseteq \mathbb{R}^2$.

For sets A, B, C, we can similarly define $A \times B \times C = \{(a,b,c) \mid a \in A, b \in B, c \in C\}$.

More generally, ne can défine the Cartesian product of n sets to be the set of ordered <u>n-tuples</u>.

Ex: $R^3 = R \times R \times R = \{(x,y,z) \mid x,y,z \in R\}.$ $R^n = R \times R \times ... \times R = \{(x,y,z) \mid x,y,z \in R\}.$

Functions

Def: Let A and B be sets. A function $f:A \rightarrow B$ is a rule which associates to each $x \in A$ an element $f(x) \in B$.

- · A is the domain of f, written A = Dom(f).

 (the set of all valid inputs)

 We might say f is a function on A.
- · B is the target or codomain of f.
 (a set containing all possible outputs)
- · For $x \in A$, f(x) is the value of f at x. [fis the function, f(x) is an element of B]
- · The word map is a synonym for function.

Note that to define a function, re must specify both the domain and the target.

Def: Let f: A→B be a function. The range of f, denoted Rng(f), is the set

Rng(f) = {y \in B | f(x) = y for some $x \in A$ }.

Note: Rng(f) = B artomatically.

Informally, Rag(f) is the set of all function values.

Ex: Let $A = \{a,b,c,d\}$. Define $f:A \to \mathbb{Z}$ by f(a) = 2, f(b) = 3, f(c) = 1, f(d) = 1.

When the domain is finite, like it is here, we can represent the function as a table. $\frac{x + f(x)}{a}$ $Rng(f) = \{1,2,3\} \subseteq \mathbb{Z}.$

Ex: Consider the functions

f: $\mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ g: $\mathbb{R} \to [0,\infty)$ " $g(x) = x^2$ h: $\mathbb{R} \to [-2,\infty)$ " $h(x) = x^2$ i: $[0,\infty) \to [0,\infty)$ " " $(x) = x^2$ j: $[1,2] \to \mathbb{R}$ " $(x) = x^2$ k: $[1,2] \to [1,4]$ " $k(x) = x^2$

Q: Why can't we add $l:[1,3] \rightarrow [1,5]$ given by $l(x) = x^2$ to this list?

Def: We say two functions f and g are equal if

① Dom(f) = Dom(g)

and
② For every $x \in Dom(f)$, f(x) = g(x).

In this case we write f = g.

Tegrality of values functions

Ex: In the previous example, we have 3 functions up to equality: f=g=h, i, and j=k.

Ex: Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Then $\mathbb{R}_{nq}(f) = [0, \infty)$.

Proof: (=) Let $y \in Rng(f)$. Then $y \in \mathbb{R}$ and y = f(x) for some $x \in \mathbb{R}$. Thus $y = x^2 \ge 0$, so $y \in (0, \infty)$.

(2) Let $y \in [0, \infty)$. Then $y \ge 0$, so $Jy \in \mathbb{R}$. Set $x \in Jy$. We have $f(x) = x^2 = (Jy)^2 = y,$ which shows that $y \in [0, \infty)$.