Warm-Up: Prove that

$$
\begin{gathered}
f: \mathbb{R} \backslash\{3\} \\
x \longmapsto \mathbb{R} \backslash\{1\} \\
\longmapsto \frac{x}{x-3}
\end{gathered}
$$

is a bijection.

Inverse Functions
A bijection $f: A \rightarrow B$ gives us a rule for going back to B from A. Specifically, $y \in B$ can map back to the unique $x \in A$ such that $f(x)=y$.

Def: Let $f: A \rightarrow B$ be a bijection. The inverse function of f is

$$
f^{-1}: B \rightarrow A
$$

defined as follows: For each $y \in B$,
$f^{-1}(y)$ is the unique element $x \in A$ $f^{-1}(y)$ is the unique element $x \in A$ such that $f(x)=y$.
That is $f^{-1}(y)=x \Leftrightarrow y=f(x)$.

Ex: $f: \mathbb{R} \rightarrow(0, \infty)$ given by $f(x)=e^{x}$ is a bijection.
$f^{-1}:(0, \infty) \rightarrow \mathbb{R}$ is given by $f^{-1}(y)=\ln (y)$.

$$
\ln (y)=x \Leftrightarrow y=e^{x}
$$

Ex: $\begin{aligned} & g:[0, \infty) \longrightarrow[0, \infty) \\ & x \longrightarrow x^{2}\end{aligned}$ is a bijection.
Its inverse is $\begin{aligned} & g^{-1}:[0, \infty) \rightarrow[0, \infty) \\ & y \mapsto \sqrt{y}\end{aligned}$ $y \mapsto \sqrt{y}$

$$
\sqrt{y}=x \Leftrightarrow \quad \begin{aligned}
& y=x^{2} \\
& \text { and } x=0
\end{aligned}
$$

Ex: $\sin : \mathbb{R} \rightarrow \mathbb{R}$ is not a bijection, but $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[1,1]$ is.

Its inverse is $\sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin ^{-1}(y)=x \quad \Leftrightarrow \quad \begin{gathered}
y=\sin (x) \\
\text { and }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
\end{gathered}
$$

The: Let $f: A \rightarrow B$ be a bijection and let $f^{-1}: B \rightarrow A$ be its inverse. Then
(1) $f^{-1} \circ f=i d_{A}: A \rightarrow A$
(2) $f \circ f^{-1}=i d_{B}: B \rightarrow B$

This is essentially a rephrasing of the fundamental identity $f^{-1}(y)=x \quad \Longleftrightarrow f(x)=y$.

Proof: (1) Let $x \in A$. We must show

$$
\left(f^{-1} \circ f\right)(x)=i d_{1}(x)=x .
$$

Set $y=f(x)$. Then, by definition of f^{-1}, $f^{-1}(y)=x$. But then

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(y)=x .
$$

(2) Let $y \in B$ we must show

$$
\left(f \circ f^{-1}\right)(y)=i d_{B}(y)=y .
$$

Set $x=f^{-1}(y)$. Then $f(x)=y$, so

$$
\left(f \circ f^{-1}\right)(y)=f\left(f^{-1}(y)\right)=f(x)=y .
$$

Cor: Let $f: A \rightarrow B$ be a bijection. Then its inverse $f^{-1}: B \rightarrow A$ is also a bijection, and $\left(f^{-1}\right)^{-1}=f$.

Proof: Let $f: A \rightarrow B$ be a bijection.

- f^{-1} is surjective: Let $x \in A$.

We must find $y \in B$ so that $f^{-1}(y)=x$. Set $y=f(x)$. Then, by the theorem,

$$
f^{-1}(y)=f^{-1}(f(x))=x .
$$

- $\frac{f^{-1} \text { is injective }}{\text { : Let }} y_{1}, y_{2} \in B$ such that $f^{-1}\left(y_{1}\right)=f^{-1}\left(y_{2}\right)$.
Then

$$
f\left(f^{-1}\left(y_{1}\right)\right)=f\left(f^{-1}\left(y_{2}\right)\right)
$$

so by the theorem,

$$
y_{1}=y_{2}
$$

- $\left(f^{-1}\right)^{-1}=f:$ By definition, for $x \in A$ and $y \in B$,

$$
\left(f^{-1}\right)^{-1}(x)=y \Leftrightarrow x=f^{-1}(y) \Leftrightarrow f(x)=y
$$

Thus, $\left(f^{-1}\right)^{-1}=f$.

The following theorems are proved using similar
methods.
Thu: Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. If

$$
g \circ f=i d_{A} \quad \text { and } \quad f \circ g=i d_{B},
$$

then f is a bijection and $g=f^{-1}$.

The: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then gof: $A \rightarrow C$ is a bijection also, and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

