$$\frac{Warm-U_{p}}{F}: Prove \quad \text{that} \\ f: \mathbb{R} \setminus \{3\} \longrightarrow \mathbb{R} \setminus \{1\} \\ \times \longmapsto \xrightarrow{\times}_{x-3}$$

A bijection
$$f: A \rightarrow B$$
 gives us a rule for
going back to B from A. Specifically, y=B
can map back to the unique x=A such that
 $f(x) = y$.

Def: Let
$$f:A \rightarrow B$$
 be a bijection. The
inverse function of f is
 $f^{-1}: B \rightarrow A$
defined as follows: For each yeB,
 $f^{-1}(y)$ is the unique element $x \in A$
such that $f(x) = y$.
That is $f^{-1}(y) = x \iff y = f(x)$.

$$E_{X}: f: \mathbb{R} \to (0,\infty) \quad \text{given by } f(x) = e^{x}$$

is a bijection.
$$f^{-1}: (0,\infty) \to \mathbb{R} \quad \text{is given by } f^{-1}(y) = \ln(y).$$
$$\ln(y) = x \quad \Leftrightarrow \qquad y = e^{x}$$

$$\underbrace{\operatorname{Ex}}_{x}: \begin{array}{c} g: [0,\infty) \rightarrow [0,\infty) \\ x & \longrightarrow x^{2} \end{array} \quad \text{is a bijection.} \\ \hline x & \longrightarrow x^{2} \end{array}$$

$$\operatorname{Its inverse}_{x} \operatorname{is} g^{-1}: [0,\infty) \rightarrow [0,\infty) \\ y & \longrightarrow Jy \end{array}$$

$$Jy = x \iff y = x^{2}$$
and $x \ge 0$

Ex: Sin: $\mathbb{R} \to \mathbb{R}$ is not a bijection, but sin: $[-\frac{\pi}{2}, \frac{\pi}{2}] \to [1,1]$ is. Its inverse is sin⁻¹: $[-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ Sin⁻¹(y) = x (=> y = sin(x) and $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Thm: Let
$$f:A \rightarrow B$$
 be a bijection and let
 $f^{-1}:B \rightarrow A$ be its inverse. Then
and ① $f^{-1}\circ f = id_A : A \rightarrow A$
② $f \circ f^{-1} = id_B : B \rightarrow B$
This is essentially a rephrasing of the fundamental
identity $f^{-1}(y) = x \iff T(x) = y$.
Proof: ① Let $x \in A$. We must show
 $(f^{-1}\circ f)(x) = id_A(x) = x$.
Set $y = f(x)$. Then, by definition of f^{-1} ,
 $f^{-1}(y) = x$. But then
 $(f^{-1}\circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$.

Cor: Let
$$f:A \rightarrow B$$
 be a bijection. Then its
inverse $f^{-1}: B \rightarrow A$ is also a bijection, and
 $(f^{-1})^{-1} = f$.
Proof: Let $f:A \rightarrow B$ be a bijection.
• $\frac{f^{-1}}{1}$ is surjective: Let $x \in A$.
We must find yeB so that $f^{-1}(y) = x$.
Set $y = f(x)$. Then, by the theorem,
 $f^{-1}(y) = f^{-1}(f(x)) = x$.
• $\frac{f^{-1}}{1}$ is injective: Let $y_1, y_2 \in B$ such
that $f^{-1}(y_1) = f^{-1}(y_2)$.
Then
 $f(f^{-1}(y_1)) = f(f^{-1}(y_2))$,
so by the theorem,
 $y_1 = y_2$.
• $(f^{-1})^{-1} = f$: By definition, for $x \in A$ and $y \in B$,
 $(f^{-1})^{-1}(x) = y \iff x = f^{-1}(y) \iff f(x) = y$.
Thus, $(f^{-1})^{-1} = f$.

The following theorems are proved using similar methods.

Thm: Let
$$f: A \rightarrow B$$
 and $g: B \rightarrow A$ be functions.
If
 $g \circ f = id_A$ and $f \circ g = id_B$,
then f is a bijection and $g = f^{-1}$.

Thm: If
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$ are
bijections, then $g \circ f: A \rightarrow C$ is a
bijection also, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.