Warm-Up: Prove that the function

$$
f: \underset{x \longmapsto}{\mathbb{N} \longrightarrow \mathbb{N} \backslash\{1\}}
$$

is a bijection.

Cardinality
What does it mean for a set A to have exactly n elements?

Ex: $A=\{4$, red, $\$\}$ has exactly 3 elements How do we know? We can list them:

1. 4
2. red
3. \$

This is just a bijection $f:\{1,2,3\} \rightarrow A$.
surjection \Leftrightarrow every element in A is on the list injection \leftrightarrow no element in A is on the list more than once.

Def: Let A and B be sets. We say A and B have the same cardinality, denoted $|A|=|B|$, if there exists a bijection $f: A \rightarrow B$.

Book: A and B are equinumerons, $\overline{\bar{A}}=\overline{\bar{B}}$.
If A is a set and $n \in \mathbb{N}$ such that A and $\{1,2, \ldots, n\}$ have the same cardinality, then we say A has cardinality n (or A has exactly n elements), and write $|A|=n$.
We also write $|\varnothing|=0$.

This is an equivalence relation.

Them: Let A, B, C be sets. Then
(1) $|A|=|A|$. [Reflexive]
(2) If $|A|=|B|$, then $|B|=|A|$.
[Symmetric]
(3) If $|A|=|B|$ and
$|B|=|c|$, then $|A|=|c|$.

Proof sketch: (1) $\quad i d_{A}: \underset{x}{A} \rightarrow \mathrm{~A}$ is a bijection.
(2) If $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is a bijection.
(3) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then oof: $A \rightarrow C$ is a bijection. (HW22)

Finite and infinite sets

Def: A set A is finite if either

$$
\text { - } A=\varnothing \quad \text { (ie. }|A|=0 \text {) }
$$

or

- there exists $n \in \mathbb{N}$ such that $|A|=n$.

A set is infinite if it is not finite.
Ex: $A=\{4$, red, $\$\} . \quad|A|=3$
Ex: $\quad B=\{a, b, c, \ldots, z\} . \quad|B|=26$
Ex: Is there a set C such that $|C|=3$ and $|C|=26 ? \quad N_{0}$!

The: Let $n, m \in \mathbb{N} \cup\{0\}$. If A is a set such that $|A|=n$ and $|A|=m$, then $n=m$.

Proof idem:
$|A|=n$ means there is a bijection $f:\{1, \ldots, n\} \rightarrow A$
$|A|=m$ $g:\{1, \ldots, m\} \rightarrow A$.

So $g^{-1} \circ f:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ is a bijection.

- If $n>m$, this can't be infective.
- If $n<m$, this cont be surjective.

