Recall: A set A is finite if
•
$$A = \emptyset$$

or
• For some $n \in N$, there is a bijection
 $f: \{1, 2, ..., n\} \rightarrow A$.
Think: f lists all elements of A on n lines
with no reperts.
In this case, write $|A| = n$.

Here's one solution: Suppose
$$|M| = n$$
, so
there is a bijection f: {1,2,...,n} → 1N.
Let
 $M = \max imm of f(1), f(2), ..., f(n).$
Then $f(L) \leq M < M + 1$ for all $L \in {1,...,n}$, so
 $M + 1 \in IN \setminus Rng(F).$
Thus, f is not surjective, so cannot be a bijection.
Ex: Similarly, Q and R are infinite.
WARNING: It may be tempting to write
 $|M| = \infty$
 $|Q| = \infty$
 $|R| = \infty$
 $M = \min do this.$
As we will see, $|M| = |Q|$, but $|M| \neq |R|$.
First, more on finite sets.

Thm: Let S be a finite set and
$$T \in S$$
.
Then
 Tis finite
 $TII \notin |S|$
 $|T| = |S|$ if and only if $T = S$.
Proof: Book Thins 13.30, 13.33.
(By induction on ISI. Not hard-just tedious.)
Cor: Let A and B be finite sets, and
let f: A \Rightarrow B be a function. Then
 D If f is an injection, then $|A| \notin |B|$
 $@$ If f is a surjection, then $|A| \notin |B|$
 $@$ If f is a surjection, then $|A| \notin |B|$
 $@$ If f is a surjection, then $|A| \notin |B|$
 $@$ If f is a surjection, then $|A| \notin |B|$
 $@$ If f is a surjection, then $|A| \notin |B|$
 $Proof:$ () Suppose f: A \Rightarrow B is injective. Then
 $f: A \rightarrow Rng(f)$
is a bijection. Hence, $|A| = |Rng(f_i)|$.
But $Rng(f) \leq B$, so $|Rng(f_i)| \notin |B|$ by the
Theorem. Together, we get $|A| \notin |B|$.

(2) Suppose
$$f:A \rightarrow B$$
 is surjective. Since B
is finite, $|B|=n$ for some $n \in N$, so
we can write
 $B = \{b_1, b_2, ..., b_n\}$.
For each $i \in \{1, ..., n\}$, let $a_i \in A$ be such that
 $f(a_i) = b_i$.
If $i \neq j$, then $f(a_i) = b_i \neq b_j = f(a_j)$, so
 $a_i \neq a_j$.
Thus, $|\{a_{i_1}, ..., a_n\}| = n$. But $\{a_{i_1}, ..., a_n\} \in A$,
so $n \leq |A|$. Since $|B|=n$, we have
 $|A| \geq |B|$.

The contrapositive of ① is the <u>Pigeonhole Principle</u>: Let A and B be finite sets and f:A→B a function. If |A| > |B|, then f is not injective. A - set of pigeons B - set of pigeonholes f:A→B puts each pigeon in a pigeonhole Then there is a pigeonhole containing more than one pigeon.

Ex: If
$$a_{1,a_{2},a_{3},a_{4}} \in \mathbb{Z}$$
, then the difference $a_{i}-a_{j}$ will be divisible by 3 for some $i \neq j$.

Ex: Suppose n people are at a party. Then there are two people who have the same number of friends at the party. 4 Cannot be someone with O friends and someone with n-1 friends. So possibilities are 0,...,n-2 or 1,...,n-1.