Recall: A set A is finite if

$$
\cdot A=\varnothing
$$

or

- For some $n \in \mathbb{N}$, there is a bijection $f:\{1,2, \ldots, n\} \rightarrow A$.
Think: f lists all elements of A on n lies with no repents.
In this case, write $|A|=n$.

Warm-Up: You probably intuit that \mathbb{N} is infinite (ere, not finite).

Try to prove this.
Hint: Use contradiction.

Here's one solution: Suppose $|\mathbb{N}|=n$, so
there is a bijection $f:\{1,2, \ldots, n\} \rightarrow \mathbb{N}$.
Let

$$
M=\text { maximum of } f(1), f(2), \ldots, f(n)
$$

Then $f(k) \leq M<M+1$ for all $k \in\{1, \ldots, n\}$, so $M+1 \in \mathbb{N} \backslash R_{n g}(f)$.

Thus, f is not surjective, so cannot be a bijection.

Ex: Similarly, \mathbb{Q} and \mathbb{R} are infinite.
WARNING: It may be tempting to write

$$
\begin{aligned}
& |\mathbb{N}|=\infty \\
& |\mathbb{Q}|=\infty \\
& |\mathbb{R}|=\infty
\end{aligned}
$$

We will not do this.
As we will see, $|\mathbb{N}|=|Q|$, but $|\mathbb{N}| \neq|R|$. First, more on finite sets.

Thu: Let S be a finite set and $T \subseteq S$.
Then

- $T_{\text {is finite }}$
- $|T| \leq|s|$
- $|T|=|S|$ if and only if $T=S$.

Proof: Book This 13.30, 13.33.
(By induction on |S|. Not hard-just tedious.)

Cor: Let A and B be finite sets, and let $f: A \rightarrow B$ be a function. Then
(1) If f is an injection, then $|A| \leq|B|$
(2) If f is a surjection, then $|A| \geqslant|B|$

Proof: (1) Suppose $f: A \rightarrow B$ is injective. Then

$$
f: A \rightarrow R n g(f)
$$

is a bijection. Hence, $|A|=\left|R_{n}(f)\right|$.
But $R_{n}(f) \subseteq B$, so $\left|R_{n j}(f)\right| \leqslant|B|$ by the
Theorem. Together, we get $|A| \leq|B|$.
(2) Suppose $f: A \rightarrow B$ is surjective. Since B is finite, $|B|=n$ for some $n \in \mathbb{N}$, so we can unite

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} .
$$

For each $i \in\{1, \ldots, n\}$, let $a_{i} \in A$ be such that $f\left(a_{i}\right)=b_{i}$.

If $i \neq j$, then $f\left(a_{i}\right)=b_{i} \neq b_{j}=f\left(a_{j}\right)$, so $a_{i} \neq a_{j}$.
Thus, $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right|=n . \operatorname{Bat}\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A$, So $n \leq|A|$. Since $|B|=n$, we have $|A| \geq|B|$.

The contrapositive of (1) is the
Pigeonhole Principle: Let A and B be finite sets and $f: A \rightarrow B$ a function. If $|A|>|B|$, then f is not injective.
A - set of pigeons
B - set of pigeonholes
$f: A \rightarrow B$ puts each pigeon in a pigeonhole
Then there is a pigeonhole containing more than one pigeon.

Ex: If $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{Z}$, then the difference $a_{i}-a_{j}$ will be divisible by 3 for some $i \neq j$.

Ex: Suppose n people are at a party. Then there are two people who have the same number of fiends at the party.
\rightarrow Cannot be someone with O friends and someone with $n-1$ friends. So possibilities ar $0, \ldots, n-2$ or $1, \ldots, n-1$.

