$$\frac{Warm-Up}{F}: Can you find a bijection f: IN \longrightarrow \mathbb{Z}?$$

We already saw that

$$f: IN \longrightarrow IN \{1\}$$

 $\times \longmapsto \times +1$

is a bijection, so
$$|N| = |N \setminus \{1\}|$$
.

Here's another example: $E_{x}: Le + E = \{n \in IN \mid n \text{ is onen}\} = \{2,4,6,8,...\}.$ Then $g: N \rightarrow E$ $x \mapsto 2x$ is a bijection. Thus, INI = |E|. $Proof: Let x_{i}, x_{i} \in IN. \quad If f(x_{i}) = f(x_{i}), \text{ then}$ $2x_{i} = 2x_{i}, \text{ so cancelling the 2 gives}$ $x_{i} = x_{i}. \quad Thus, f is injective.$

A set is <u>countable</u> if it is finite or countably infinite.

A set is <u>unconntable</u> if it is not countable.

Define a bijection
$$f: IN \rightarrow IN \times IN$$
 by reading
along the northeast diagonals in order:
 $f(1) = (1, 1)$
 $f(2) = (2, 1)$
 $f(3) = (1, 2)$
 $f(4) = (3, 1)$

Ex: The set
$$Q_{20} = \{q \in Q \mid q \geq 0\}$$
 of positive
rational numbers is countably infinite.

Key idea: Each $q \in Q_{20}$ can be written uniquely
as $q = \frac{2}{6}$ where
 $a_{3}b \in IN$
and $\frac{2}{6}$ is in lowest terms $(gel(s_{1}b) = 1)$

Now, use a grid again, but cross ant functions
not in lacest terms:

 $\frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}$

S.

$$h(1) = 0$$

$$h(2) = g(1) = 1$$

$$h(3) = -g(1) = -1$$

$$h(4) = g(2) = 2$$

$$h(5) = -g(2) = -2$$