Warm-U $:$ Use a truth table to show that $P \Rightarrow Q$ is not logically equivalent to $Q \Rightarrow P$.

A sentence of the form $P \Rightarrow Q$ is called a conditional sentence.

Ways to say $P \Rightarrow Q$:
" P implies Q "
"If P, then Q "
" P is sufficient for Q "
" Q is necessary for P "
In a conditional sentence $P \Rightarrow Q$, P is the antecedent and Q is the consequent.

More informally, P is the "assumption" and Q is the "conclusion."

Converse and contrapositive
Let P and Q be sentences.
The converse of $P \Rightarrow Q$ is the sentence

$$
Q \Rightarrow P .
$$

The contrapositive of $P \Rightarrow Q$ is the sentence

$$
\neg Q \Rightarrow \neg P .
$$

Ex: "If it is raining, then the ground
Converse: "If the ground is net, then it is raining."
Contrapositive: "If the ground is dry, then it is not raining."

We saw in the Warm-Up that $P \Rightarrow Q$ is not logically equivalent to the converse $Q \Rightarrow P$.

Thu: $P \Rightarrow Q$ is logically equivalent to the contrapositive $\neg Q \Rightarrow \neg P$.

Proof: We have

$$
\begin{aligned}
\neg Q \Rightarrow \neg P & \equiv \neg(\neg Q) \vee \neg P \\
& \equiv Q \vee \neg P \\
& \equiv \neg P \vee Q \\
& \equiv P \Rightarrow Q .
\end{aligned}
$$

Alternatively:

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$\neg Q \Rightarrow \neg P$
T	T	T	F	F	T
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	T	T	T

A final logical connective:
(5) Biconditional: \Leftrightarrow means "if and only if"
$P \Leftrightarrow Q$ is true exactly when P and Q have the same truth value.

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

Thu: $P \Leftrightarrow Q$ is logically equivalent to $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$.

Proof:

P	Q	$P \Leftrightarrow Q$	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \wedge(Q \Rightarrow P)$
T	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T

A sentence of the form $P \Leftrightarrow Q$ is called a biconditional sentence.

Ways to say $P \Leftrightarrow Q$:
" P if and only if Q "
" P is necessary and sufficient for Q "
" Q is necessary and sufficient for P "
" P is necessong for Q " is $Q \Rightarrow P$
" P is sufficient for Q " is $P \Rightarrow Q$

Ex: $\quad x^{2}=9 \quad x \quad x=3$ or $x=-3$
This sentence is true. Why?
Let P be " x " $=9$ " and Q be " $x=3$ or $x=-3$ ".

We'll show $P \Rightarrow Q$ and $Q \Rightarrow P$ are both true.
$P \Rightarrow Q$
Case 1: P is true. Then $x^{2}=9$, so

$$
x^{2}-9=0
$$

Factor to get $(x-3)(x+3)=0$.
Hence, $x-3=0$ or $x+3=0$.
That is, $x=3$ or $x=-3$, so Q is true.

Case 2: P is false. Then $P \Rightarrow Q$ is vacuously true.
$Q \Rightarrow P$
Case 1: Q is true. Then $x=3$ or $x=-3$, so

$$
x^{2}=3^{2}=9 \quad \text { or } \quad x^{2}=(-3)^{2}=9
$$

That is, P is true. r
Case 2: Q is false. Then $Q \Rightarrow P$ is vacuously true.

Conditional Proof
In general, to show $P \Rightarrow Q$ is true, we must
(1) Assume P is true.
(2) Under this assumption, show that Q must be true also.

Why is this valid?
When P is false, $P \Rightarrow Q$ is automatically true.

This method is called conditional proof.
Most of our theorems will be of the form $P \Rightarrow Q$, so we will write a lot of conditional proofs.

To prove a biconditional $P \Leftrightarrow Q$, we need two conditional proofs: for $P \Rightarrow Q$ and $Q \Rightarrow P$.

