Recall: The truth value of the sentence
"If
$$xy > 0$$
, then $x > 0$ and $y > 0$ "
depends on the numerical values of x
and y.
We said it is false because it can be
false (e.g. $x=-1$, $y=-1$), but it can also
be true (e.g. $x=1$, $y=1$ or $x=-1$, $y=1$).
Quantifiers let us discuss such situations.

The <u>universal quantifier</u> is V, which means "for all."

If
$$P(x)$$
 is a sentence involving the
variable x, then $(\forall x) P(x)$ is the
sentence
"for all x, $P(x)$ "
also read as
"for a p(x)"

Ex: Let
$$P(x)$$
 be the sentence
" $(x > 1) \Rightarrow (x^2 > 1)$ "
and let $Q(x)$ be the converse
" $(x^2 > 1) \Rightarrow (x > 1)$."
Then $(\forall x) P(x)$ is true.
 $(\exists x) P(x)$ is true.
 $(\exists x) Q(x)$ is fulse.
 $(\exists x) Q(x)$ is true.
Note: We should be more careful to
specify which values the bound
variable is allowed to take on.
The above statements are correct
when x can be any real number.
To indicate this, we will write
 $(\forall x \in \mathbb{R})$ and $(\exists x \in \mathbb{R})$.

Ex: Which statements are true?
()
$$(\exists x \in \mathbb{R})(x + 4 = 9)$$

True: x=5.
(2) $(\forall x \in \mathbb{R})(x + 4 = 9)$
False: Try x=0.
(3) $(\exists x \in \mathbb{R})[(x + 4 = 9) \land (x \neq 5)]$
False: x + 4 = 9 \Rightarrow x = 9 - 4 = 5
(4) $(\exists x \in \mathbb{R})(x^2 + 6x + 8 \ge 0)$
True: Try x=0.
(5) $(\forall x \in \mathbb{R})(x^2 + 6x + 8 \ge 0)$
Can guess and check, or complete
the square:
x^2 + 6x + 8 = x^2 + 6x + 9 - 1
= (x + 3)^2 - 1.
False: Try x = -3.

6
$$(\forall x \in \mathbb{R})(x^2 + 6x + 10 \ge 0)$$

True: $x^2 + 6x + 10 = (x + 3)^2 + 1 \ge 1 > 0$
for all real numbers x.

Note: When we use a quantifier (V or I),
a bound variable is ranging over a
universe of possibilities.
Usually, we should be explicit about this.
Common choices:
$$Z = the set of integers $Q = the set of rational numbers $R = the set of real numbers$
 $C = the set of complex numbers$
The universe matters!

 $E_{x}: (I_{x})(x^{2}=2)$ Ambiguous
 $(I_{x} \in Z)(x^{2}=2)$ False, $JZ \notin Z$
 $(I_{x} \in R)(x^{2}=2)$ True, $JZ \notin Z$
 $(I_{x} \in R)(x^{2}=0)$ True
 $(\forall x \in C)(x^{2}=0)$ True$$$