Warm-Up: Show that the sentence

$$
(P \wedge Q) \Rightarrow P
$$

is a tautology - that is, it is true regardless of the sentences P and Q.
Do this (1) Using a truth table.
(2) By writing a conditional proof.

Recall: The truth value of the sentence "If $x y>0$, then $x>0$ and $y>0$ " depends on the numerical values of x and y.

We said it is false because it can be false (e.g. $x=-1, y=-1$), but it can also be true (e.g. $x=1, y=1$ or $x=-1, y=1$).

Quantifiers let us discuss such situations.

Quantifiers
The universal quantifier is \forall, which means "for all."

If $P(x)$ is a sentence involving the variable x, then $(\forall x) P(x)$ is the sentence
"for all $x, \quad P(x)$ "
also read as
"for every $x, P(x)$ "
"for each $x, P(x)$ "
"for any $x, P(x)$."

The existential quantifier is \exists, which means "there exists."
$(\exists x) P(x)$ is the sentence
"there exists x such that $P(x)$ " also read as
"for some $x, P(x)$ "
"for at least one $x, P(x)$."

Note:- A quantifier (\forall, \exists) is always "attached" to a variable, catted the bound variable.

- A quantifier is always followed by a sentence involving the bound variable.

Ex: Let $P(x)$ be the sentence

$$
"(x>1) \Rightarrow\left(x^{2}>1\right) "
$$

and let $Q(x)$ be the converse

$$
"\left(x^{2}>1\right) \Rightarrow(x>1)
$$

Then $\cdot(\forall x) P(x)$ is true.

- $(\exists x) P(x)$ is true.
- $(\forall x) Q(x)$ is false.
- $(\exists x) Q(x)$ is true.

Note: We should be more careful to specify which values the bound variable is allowed to take on.

The above statements are correct when x can be any real number.

To indicate this, we will write $(\forall x \in \mathbb{R})$ and $(\exists x \in \mathbb{R})$.

Ex: Which statements are true?
(1) $(\exists x \in \mathbb{R})(x+4=9)$

True: $x=5$.
(2) $(\forall x \in \mathbb{R})(x+4=9)$

False: Try $x=0$.
(3) $(\exists x \in \mathbb{R})[(x+4=9) \wedge(x \neq 5)]$

False: $x+4=9 \Rightarrow x=9-4=5$
(4) $(\exists x \in \mathbb{R})\left(x^{2}+6 x+8 \geqslant 0\right)$

True: Ty $x=0$.
(5) $(\forall x \in \mathbb{R})\left(x^{2}+6 x+8 \geq 0\right)$

Can guess and check, or complete the square:

$$
\begin{aligned}
x^{2}+6 x+8 & =x^{2}+6 x+9-1 \\
& =(x+3)^{2}-1 .
\end{aligned}
$$

False: Try $x=-3$.
(6) $(\forall x \in \mathbb{R})\left(x^{2}+6 x+10 \geq 0\right)$

True: $x^{2}+6 x+10=(x+3)^{2}+1 \geqslant 1>0$ for all real numbers x.

Observe: A single example proves a \exists statement.

- A single counterexample disproves a \forall statement.
- To prove a \forall statement or disprove a \exists statement, we need an argument that works for all values.

Note: When we use a quantifier (\forall or \exists), a bound variable is ranging over a universe of possibilities.

Usually, we should be explicit about this. Common choices:
$\mathbb{Z}=$ the set of integers
$\mathbb{Q}=$ the set of rational numbers
$\mathbb{R}=$ the set of real numbers
$\mathbb{C}=$ the set of complex numbers
The universe matters!

Ex: $(\exists x)\left(x^{2}=2\right) \quad$ Ambiguous

$$
\begin{array}{ll}
(\exists x \in \mathbb{Z})\left(x^{2}=2\right) & \text { False, } \sqrt{2} \notin \mathbb{Z} \\
(\exists x \in \mathbb{R})\left(x^{2}=2\right) & \text { True, } \sqrt{2} \in \mathbb{R}
\end{array}
$$

Ex: $(\forall x \in \mathbb{R})\left(x^{2} \geqslant 0\right) \quad$ True

$$
(\forall x \in \mathbb{C})\left(x^{2} \geqslant 0\right) \quad \text { False, } \sqrt{-1} \in \mathbb{C}
$$

