(c)
$$(x > 2) \Rightarrow (x^2 > 4)$$

(d) $(x > 2) \iff (x^2 > 4)$

$$\frac{Free + Bound Variables}{Variables}$$
Let $P(x) = "x^2 + 6x + 8 \ge 0."$

• Is $P(x)$ true? It depends on x .

We say that x is a free variable in the sentence $P(x)$.

Think: The sentence $P(x)$ is a function of x .

$$E_{x}: If A = \{-3, 1, 4\}, \text{ then}$$

$$(\forall x \in A)(x^{2} < 20) \equiv ((-3)^{2} < 20) \land (1^{2} < 20) \land (4^{2} < 20)$$

$$(\exists x \in A)(x > 0) \equiv (-3 > 0) \lor (1 > 0) \lor (4 > 0)$$

$$(Both true)$$
For this reason, we can think
of V as "generalized and" and
$$\exists as "generalized or."$$

$$\frac{\text{Thm}}{(a)} - \left[(\forall x \in A) P(x) \right] = (\exists x \in A) (\neg P(x))$$

$$(b) - \left[(\exists x \in A) P(x) \right] = (\forall x \in A) (\neg P(x))$$

<u>Proof</u>: (a) Suppose $\neg [(\forall x \in A) P(x)]$ is true. Then $(\forall x \in A) P(x)$ is fulse.

So there is some
$$x_0 \in A$$
 such that $P(x_0)$
is fulse, i.e. $\neg P(x_0)$ is time.
Hence $(\exists x \in A) (\neg P(x))$ is time.
Conversely, suppose $(\exists x \in A) (\neg P(x))$ is time.
Then there is $x_0 \in A$ such that $\neg P(x_0)$
is time, i.e. $P(x_0)$ is fulse.
So $(\forall x \in A) P(x)$ is fulse. Therefore,
 $\neg (\forall x \in A) P(x)$ is time.
(b) is similar (see book).
Then (Generalized Distributive Laws):
Let P be a sentence not involving x.
Let Q(x) be a sentence involving x.
Then
a) $P \land [(\exists x \in A) Q(x)] \equiv (\exists x \in A) [P \land Q(x)]$
b) $P \lor [(\forall x \in A) Q(x)] \equiv (\forall x \in A) [P \lor Q(x)].$
Proof: Omithed (see book).

Order of Quantifiers
Suppose
$$P(x, y)$$
 is a sentence involving 2 vanishles.
What is the difference between
(a) $(\forall x)[(\exists y) P(x, y)]$
and
(b) $(\exists y)[(\forall x) P(x, y)]$?
(c) is "for any $x \in R$, there exists $y \in R$ such that
 $x + y = 1$ " True!
Proof: Let $x \in R$. Set $y \cdot 1 - x$. Then
 $y \in R$ and $x + y = x + (1 - x) = 1$. ∞
(b) is "there is $y \in R$ such that for any $x \in R$, is have
 $x + y = 1$ " False!
How to prove? Let's show $-(1)$ is true.

Ex:
$$P(x,y) = "x+y = 1"$$

(a) is "for any $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that
 $x+y = 1"$ True!
 P_{roof} : Let $x \in \mathbb{R}$. Set $y = 1-x$. Then
 $y \in \mathbb{R}$ and $x+y = x+(1-x) = 1$.

(b) is "there is
$$y \in \mathbb{R}$$
 such that for any $x \in \mathbb{R}$, we have
 $x + y = 1$ " False!

How to prove? Let's show $\neg(b)$ is true.

By DeMorgan,

$$\neg (\exists y) (\forall x) P(x, y) = (\forall y) \neg [(\forall x) P(x, y)]$$

$$= (\forall y) [(\exists x) \neg P(x, y)]$$

Proof: Let
$$y \in \mathbb{R}$$
. We must show there is $x \in \mathbb{R}$ such that $x+y \neq 1$. Take $x = -y$. Then $x+y = (-y)+y=0 \neq 1$.

To summarize: