1 (Judson $1.6 \& 1.16) \quad$ Let A and B be sets.
Prove the following equalities by showing a set containment in both directions.
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(b) $(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)$

2 (Judson 1.20) Provide examples of functions satisfying the given conditions.
(a) $f: \mathbb{N} \rightarrow \mathbb{N}$ is injective but not surjective.
(b) $g: \mathbb{N} \rightarrow \mathbb{N}$ is surjective but not injective.

3 Let X and Y be sets with $|X|=4$ and $|Y|=7$.
(a) How many subsets does X have? How many of these are proper subsets?
(b) What is $|X \times Y|$?
(c) How many functions are there from X to Y ?
(d) How many functions are there from Y to X ?

4 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps of sets. The composition $g \circ f: X \rightarrow Z$ may be diagrammed as

$$
X \xrightarrow{f} Y \xrightarrow{g} Z .
$$

(a) Prove that if f and g are each injective, then $g \circ f$ is injective.
(b) Prove that if f and g are each surjective, then $g \circ f$ is surjective.
(c) Conclude that if f and g are each bijections, then $g \circ f$ is a bijection.

