1 (Judson 1.6 & 1.16) Let *A* and *B* be sets.

Prove the following equalities by showing a set containment in both directions.

(a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(b)
$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

- **2 (Judson 1.20)** Provide examples of functions satisfying the given conditions.
 - (a) $f: \mathbb{N} \to \mathbb{N}$ is injective but not surjective.
 - (b) $g: \mathbb{N} \to \mathbb{N}$ is surjective but not injective.

- 3 Let *X* and *Y* be sets with |X| = 4 and |Y| = 7.
 - (a) How many subsets does *X* have? How many of these are *proper* subsets?
 - (b) What is $|X \times Y|$?
 - (c) How many functions are there from X to Y?
 - (d) How many functions are there from Y to X?

4 Let $f: X \to Y$ and $g: Y \to Z$ be maps of sets. The composition $g \circ f: X \to Z$ may be diagrammed as

$$X \xrightarrow{f} Y \xrightarrow{g} Z.$$

- (a) Prove that if f and g are each injective, then $g \circ f$ is injective.
- (b) Prove that if f and g are each surjective, then $g \circ f$ is surjective.
- (c) Conclude that if f and g are each bijections, then $g \circ f$ is a bijection.