1 Let

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 2 & 1
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 4 & 1
\end{array}\right) .
$$

Write the following permutations in cycle notation, as a product of disjoint cycles.
(a) $\sigma$
(b) $\tau$
(c) $\sigma \tau$
(d) $\tau \sigma$
(e) $\sigma^{2}$

2 Write each of the following permutations as a product of disjoint cycles in $S_{6}$.
(a) $(12)(23)(34)(45)(56)$
(b) $(345)^{-1}$
(c) $(345)(2564)(354)$

3 Let $\sigma=\left(a_{1} a_{2} \cdots a_{k}\right)$ be a cycle of length $k$.
Prove that $\sigma$ can be written as a product of $k-1$ transpositions.
[HINT: Look at problem 2(a) for inspiration.]

