1 Let $Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$, which is a group under multiplication where

- 1 is the identity element.
- $(-1) \cdot i=-i$, and similarly for $-j$ and $-k$.
- $i^{2}=j^{2}=k^{2}=-1$.
- $i j=k, j k=i$, and $k i=j$.
- $j i=-k, k j=-i$, and $i k=-j$.
(a) Use the above information to write the Cayley table (multiplication table) for Q_{8}.
(b) Find all cyclic subgroups of Q_{8}.
(c) Prove that every proper subgroup of Q_{8} is cyclic.
(d) Draw the subgroup lattice of Q_{8}.

2 Let G be a group and $x \in G$. Define the conjugacy class containing x to be the set

$$
\left\{g x g^{-1} \mid g \in G\right\}
$$

[NOTE: On Exam 1, you proved that the relation
$x \sim y$ if and only if there exists $g \in G$ such that $y=g x g^{-1}$
is an equivalence relation on G. The conjugacy class containing x is just the equivalence class $[x]$ under this relation.]

Compute all of the conjugacy classes in the following groups.
(a) \mathbb{Z}_{8}
(b) D_{4}
(c) Q_{8}

