- **1** Let $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$, which is a group under multiplication where
 - 1 is the identity element.
 - $(-1) \cdot i = -i$, and similarly for -j and -k.
 - $i^2 = j^2 = k^2 = -1$.
 - ij = k, jk = i, and ki = j.
 - ji = -k, kj = -i, and ik = -j.
 - (a) Use the above information to write the Cayley table (multiplication table) for Q_8 .
 - (b) Find all cyclic subgroups of Q_8 .
 - (c) Prove that every proper subgroup of Q_8 is cyclic.
 - (d) Draw the subgroup lattice of Q_8 .

2 Let *G* be a group and $x \in G$. Define the **conjugacy class** containing *x* to be the set

$$\{gxg^{-1} \mid g \in G\}.$$

[NOTE: On Exam 1, you proved that the relation

 $x \sim y$ if and only if there exists $g \in G$ such that $y = gxg^{-1}$

is an equivalence relation on *G*. The conjugacy class containing x is just the equivalence class [x] under this relation.]

Compute all of the conjugacy classes in the following groups.

- (a) \mathbb{Z}_8
- (b) *D*₄
- (c) *Q*₈