1 Let *G* be a group, and suppose $H \le G$ is a subgroup of index 2. Prove that gH = Hg for every $g \in G$.

2 Let $n \in \mathbb{N}$.

- (a) Show that if $n \ge 3$, then U(n) contains an element of order 2.
- (b) Recall that $|U(n)| = \phi(n)$ is equal to the number of integers *a* such that $1 \le a \le n$ and gcd(a, n) = 1.

Use part (a) and Lagrange's theorem to prove that $\phi(n)$ is even if $n \ge 3$.

- **3** Let *G* be a group with |G| = 15
 - (a) What are the possible orders of elements in *G*?
 - (b) Prove that *G* must have an element of order 3.