1 (Judson 9.5 - modified)
(a) Prove that $U(5) \cong U(10)$ by explicitly defining an isomomorphism

$$
\varphi: U(5) \rightarrow U(10)
$$

Be sure to check that φ is an isomorphism!
(b) Prove that $U(5) \neq U(12)$.

2 Let G be a group and let $g \in G$ be an element. Define the "left multiplication by $g^{\prime \prime}$ map

$$
\begin{aligned}
\lambda_{g}: G & \rightarrow G \\
x & \rightarrow g x .
\end{aligned}
$$

(a) Prove that λ_{g} is a bijection from G to itself.
(b) Prove that λ_{g} is an isomorphism if and only if $g=e$ is the identity element in G.

3 Let G be a group and let $g \in G$ be an element. Define the "conjugation by $g^{\prime \prime}$ map

$$
\begin{aligned}
\gamma_{g}: G & \rightarrow G \\
x & \mapsto g x g^{-1} .
\end{aligned}
$$

(a) Recall that an isomorphism from G to itself is called an automorphism of G. Prove that γ_{g} is an automorphism.
(b) Prove that

$$
\operatorname{Inn}(G)=\left\{\gamma_{g} \mid g \in G\right\}
$$

is a group under function composition. This group is called the inner automorphism group of G.

