1 Let *G* be a group and let $N \leq G$ be a normal subgroup. Prove that the cosets xN and yN commute in G/N if and only if $x^{-1}y^{-1}xy \in N$. (The element $x^{-1}y^{-1}xy$ is called the **commutator** of *x* and *y*.) **2** Let $H = \{id, (12)(34), (13)(24), (14)(23)\} \le S_4$. (You should convince yourself that *H* is in fact a subgroup of S_4 ; however, you do not need to prove it here.)

- (a) Prove that $H \leq S_4$.
- (b) What is the cardinality of S_4/H ? Write a complete list (with no repetitions) of the cosets of *H* in S_4 .
- (c) Write the group operation table for the quotient group S_4/H .
- (d) Give an example of a homomorphism with domain S_4 and kernel H.

- **3** Consider the function $\varphi \colon \mathbb{R}^{\times} \to \mathbb{R}^{\times}$ defined by $\varphi(x) = |x|$.
 - (a) Prove that φ is a homomorphism.
 - (b) Find the kernel and the image of φ .
 - (c) What does the First Isomorphism Theorem say when applied to φ ?
 - (d) Describe the fibers of φ .

4 Let *G* be a group. Recall from HW 15 Problem 3 the inner automorphism group $Inn(G) = \{\gamma_g \mid g \in G\},\$

where γ_g is the automorphism

$$\gamma_g \colon G \to G$$
$$x \mapsto g x g^{-1}$$

(a) Prove that

$$\Gamma \colon G \to \operatorname{Inn}(G)$$
$$g \mapsto \gamma_g$$

is a surjective homomorphism.

(b) Use the First Isomorphism Theorem to prove that $G/Z(G) \cong \text{Inn}(G)$.