1 (Judson 1.21) Prove the relation defined on \mathbb{R}^2 by $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$ is an equivalence relation. **2** Let $f: X \to Y$ be a surjective map of sets. For each $y \in Y$, the **fiber of** f **over** y is the set

$$f^{-1}(y) = \{ x \in X \mid f(x) = y \}.$$

[CAUTION: The fiber $f^{-1}(y)$ is a *subset* of X.]

- (a) For example, consider the surjection $f \colon \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ given by $f(x, y) = x^2 + y^2$. For each $r \in \mathbb{R}_{\geq 0}$, describe the fiber $f^{-1}(r)$.
- (b) Let $f: X \to Y$ be a surjective map of sets. Prove that the relation

$$x_1 \sim x_2$$
 if and only if $f(x_1) = f(x_2)$

is an equivalence relation on the set X. Prove that the equivalence classes are the fibers of f.

3 (Judson 2.11) Let $x \ge 0$ be a real number. Use induction to prove that

 $(1+x)^n \ge 1 + nx$

for every integer $n \ge 0$.