1 Let A and B be groups, and consider the direct product $G=A \times B$.
(a) Prove that

$$
N=\left\{\left(e_{A}, b\right) \in A \times B \mid b \in B\right\}
$$

is a subgroup of G, where e_{A} is the identity element of A.
(b) Prove that $N \cong B$.
(c) Prove that $N \unlhd G$.
(d) Prove that $G / N \cong A$.

2 Let G be a finite group, and let $N \unlhd G$ be a normal subgroup. Let $g \in G$.
(a) Explain why the element $g N$ in the group G / N has finite order.
(b) Prove that the order of $g N$ in G / N divides the order of g in G.

