1 Let $S = \{f \colon \mathbb{R} \to \mathbb{R}\}$ be the set of all functions from \mathbb{R} to itself. Addition and multiplication of functions in S are defined *pointwise*, so that if $f,g \in S$, then f+g is the function

$$(f+g)(x) = f(x) + g(x)$$

and fg is the function

$$(fg)(x) = f(x)g(x).$$

- (a) Prove that *S* is a ring under these operations.
- (b) Does *S* have an identity element? Is *S* commutative?
- (c) Let $a \in \mathbb{R}$. Define a function

$$\varphi_a \colon S \to \mathbb{R}$$
 $f \mapsto f(a).$

That is, φ_a is the **evaluation at** *a* function. Prove that φ_a is a ring homomorphism.

(d) Describe the kernel ker φ_a .

2

(a) Describe all *group* homomorphisms $\varphi \colon \mathbb{Z} \to \mathbb{Z}$.

(b) Describe all *ring* homomorphisms $\varphi \colon \mathbb{Z} \to \mathbb{Z}$.

[HINT: In both cases, what can $\varphi(1)$ be?]

3 (Judson 16.28) A ring R is called a **Boolean ring** if $a^2 = a$ for every $a \in R$. Prove that every Boolean ring is commutative.

- 4 Let $\mathbb{Z}[x]$ be the ring of polynomials in the variable x with integer coefficients. Determine which of the following are ideals in $\mathbb{Z}[x]$. Provide justification for your answers.
 - (a) The set of all polynomials whose constant term is odd.
 - (b) The set of all polynomials whose constant term is even.
 - (c) The set of all polynomials whose coefficient of x^2 is even.
 - (d) The set of all polynomials whose constant term, coefficient of x, and coefficient of x^2 are zero.
 - (e) The set of all polynomials p(x) such that p'(0) = 0, where p'(x) is the usual first derivative of p(x) with respect to x.

- **5** Let *E* and *F* be fields, and let φ: $E \to F$ be a homomorphism.
 - (a) Prove that if $\varphi(1) = 0$, then the image $\varphi(E)$ is equal to $\{0\}$.
 - (b) Prove that if $\varphi(1) \neq 0$, then $\varphi(1) = 1$.
 - (c) Prove that if $\varphi(1) \neq 0$, then φ is injective.