1 Let n be an odd integer. Use the division algorithm to prove that $n^{2} \equiv 1(\bmod 8)$.

2 (Judson 2.28 - modified) Let $n \in \mathbb{N}$. Prove that if $2^{n}-1$ is prime, then n must be prime.
[HINT: Prove the contrapositive.]
Primes of the form $2^{p}-1$ are called Mersenne primes. It is not known whether the number of Mersenne primes is finite or infinite. As of right now, there are 51 known Mersenne primes.

