1 (Judson 3.10 - modified) Prove that the set of matrices of the form

$$
\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right),
$$

where $x, y, z \in \mathbb{R}$, is a group under matrix multiplication. This group, known as the Heisenberg group, is important in quantum physics.

NOTE: The group operation is ordinary matrix multiplication, so that

$$
\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x^{\prime} & y^{\prime} \\
0 & 1 & z^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x+x^{\prime} & y+y^{\prime}+x z^{\prime} \\
0 & 1 & z+z^{\prime} \\
0 & 0 & 1
\end{array}\right) .
$$

2 (Judson 3.31) Let G be a group with the property that $g^{2}=e$ for every $g \in G$. Prove that G is abelian. [Here, $e \in G$ is the identity.]

3 Let G be a group and let $x, y \in G$. Prove that the following statements are equivalent:
(a) $x y=y x$.
(b) $x y x^{-1}=y$.
(c) $x y x^{-1} y^{-1}=e$, where $e \in G$ is the identity.

NOTE: To prove this three-way equivalence, you'll need to prove several one-way implications. The most straightforward approach is to prove $(a) \Rightarrow(b)$, then $(b) \Rightarrow(c)$, and lastly (c) \Rightarrow (a).

