- **1** Let *G* be a group, and let $x, g \in G$.
 - (a) Prove by induction that $(gxg^{-1})^n = gx^ng^{-1}$ for every $n \in \mathbb{N}$.
 - (b) Use the result of part (a) to prove that $|gxg^{-1}| = |x|$. [HINT: There are two cases: Either $|x| < \infty$ or $|x| = \infty$.]
 - (c) Deduce that |ab| = |ba| for all $a, b \in G$.

2 Let

$$H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, b, d \in \mathbb{R} \text{ and } ad \neq 0 \right\}.$$

Prove that *H* is a subgroup of $GL_2(\mathbb{R})$.

3 (Judson 3.54) Let *G* be a group and $H \leq G$ a subgroup. For a fixed $g \in G$, define

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$$

This is called the **conjugate of** *H* **by** *g*. Prove that gHg^{-1} is also a subgroup of *G*.

4 Let *G* be a finite group with |G| = n > 2. Prove that *G* cannot have a subgroup *H* with |H| = n - 1.