1	Let <i>G</i> be a group, and let $g \in$	G. Prove that $ g =$	$ g^{-1} .$
---	--	-----------------------	-------------

2

- (a) Find the order of every element in \mathbb{Z}_{18} . For which $a \in \mathbb{Z}_{18}$ is $\langle a \rangle = \mathbb{Z}_{18}$?
- (b) Find the order of every element in U(18). Does there exist an element $a \in U(18)$ such that $\langle a \rangle = U(18)$?

3 Let *G* be a group, and suppose that *G* has no proper non-trivial subgroups. That is, the only subgroups of *G* are *G* itself and $\{e\}$, where $e \in G$ is the identity element. Prove that *G* is cyclic and |G| = p for some prime number *p*.