- **1** Let *G* be a group, and let $H \leq G$ and $K \leq G$ be subgroups.
 - (a) Prove that $H \cap K \leq G$.
 - (b) Prove that $H \cup K \leq G$ if and only if either $H \subseteq K$ or $K \subseteq H$.

2 Let *S* be a set, and let *G* be the set of all bijections $f: S \rightarrow S$. It follows from Math 3345 that *G* is a group under function composition \circ . Indeed

- • is a binary operation on *G*: If $f: S \to S$ and $g: S \to S$ are bijections, then $f \circ g: S \to S$ is a bijection.
- \circ is associative: $(f \circ g) \circ h = f \circ (g \circ h)$.
- **Identity:** The identity function $id_S : S \to S$, defined by $id_S(x) = x$ for all $x \in S$, is a bijection and it is the identity element for \circ .
- Inverses: For any bijection *f*: *S* → *S*, the inverse function *f*⁻¹: *S* → *S* is also a bijection, and it is the inverse of *f* with respect to *◦*.

You don't need to prove any of these statements, but they should all sound familiar!

In the questions below, we consider the case where $S = \{1, 2, 3\}$.

- (a) Compute |G|.
- (b) Find $f, g \in G$ such that $f \circ g \neq g \circ f$. Thus, *G* is a non-abelian group.
- (c) Show that if $f \in G$ is not the identity, then either $f^2 = id_S$ or $f^3 = id_S$.