Math 4580-Abstract Algebra I
Syllabus

- Website - must check
- Homework - due Tues (my office 3 pm) - Fri (beginning of class)
- HW I due Tres, 8/29
- Reading is part of homework
- Guidelines
- LaTeX optional
- Rewrites (details to come)
- Collaboration encouraged!
- 3 exams
- Grades - $20 \% \mathrm{HW}, 20 \%$ each exam, 20% max\{ $\{\mathrm{HW}$, best exam $\}$
- Attendance - crucial

What is algebra?
My answer: The study of structure in mathematical objects
Ex: The equation $x^{2}+1=0$ has

- no solution in \mathbb{R},
- two solutions in $\mathbb{C}(x= \pm i)$.

This tells us something about the "structure" of \mathbb{R} and \mathbb{C}.

Ex: Symmetries of a square

- 4 rotations (incl. by 0°)
- 4 reflections.

These can be composed, eeg,

Ex: Rubik's cube has

$$
43,252,003,274,489,856,000
$$

${ }^{\tau} 43$ quintillion
symmetries.
Also not commutative, e.g., $R U \neq U R$.

Review of set theory

- Precise definition requires axioms.
- Informally, a set is a collection of objects, called elements of the set.

Notation: $a \in S$

- Sets are well-defined: for any set S and object a, either $a \in S$ or $a \notin S$.
- There is precisely one set with no elements, the empty set ϕ.
- Notation: $S=\{$... $\}$
$\tau_{\text {list }}$ of all elements
- set-builder notation

$$
S=\{x \mid P(x)\}_{\tau_{a} \text { thu/ Sole statement }}
$$

$$
\text { Ex: } E=\{2,4,6,8, \ldots\}=\{x \in \mathbb{N} \mid x \text { is even }\}
$$

Subsets
If A and B are sets, then

- A is a subset of B if

$$
x \in A \quad \Rightarrow \quad x \in B
$$

for every object x. Equivalently, every element of A is also on element of B.

Notation: $A \subseteq B$ or $A \subset B$

- A and B are equal $(A=B)$ if $A \subseteq B$ and $B \subseteq A$.
Equivalently, $A=B$ means that

$$
x \in A \Longleftrightarrow x \in B
$$

for every object x.

- A is a proper subset of B if $A \subseteq B$ and $A \neq B$.
Notation: $A \subseteq B$

