Warm-Up: D List the elements of U(12). 2 Find the order of each element. 3 Draw the subgroup lattice. Def: The Euler totient function $\phi \colon \mathbb{N} \to \mathbb{N}$ is defined by $\phi(n) = \left\{ 2a \in \mathbb{N} \mid a < n \text{ and } gcd(a,n) = 1 \right\}$ = | U(n) | Facts: 1) If p is prime, then $\phi(p)=p-1$. ② If gcd (m, n) = 1, Hen

 $\phi(mn) = \phi(m) \phi(n)$

Thum (Subgroup Criterion)
Let G be a group.
A subset
$$H \subseteq G$$
 is a subgroup of G
if and only if both
 $\cdot H \neq \emptyset$
and
 \cdot For all $g, h \in H$, we have $gh^{-1} \in H$.
Proof: (=>) Suppose $H \leq G$. Then $e \in H$, so $H \neq \emptyset$.
If $g, h \in H$, then $h^{-1} \in H$ (closure
under inverses) so $gh^{-1} \in H$ also
(closure under group operation).

(<=) Conversely, suppose the two conditions in the theorem hold. Since $H \neq \emptyset$, there is some $x \in H$. Then $x x^{-1} = e \in H$. Identify

For all
$$h \in H$$
, since $e \in H$ we
get $eh^{-1} = h^{-1} \in H$. Closure under inverses
Lastly, suppose $h_1, h_2 \in H$. By
above, $h_2^{-1} \in H$. Thus,
 $h_1(h_2^{-1})^{-1} = h_1h_2 \in H$.
closure under group operation
So $H \leq G$.

Cyclic Groups
Thm: Let G be a group. Then

$$\langle a \rangle := \{ a^k \mid k \in \mathbb{Z} \}$$

is a subgroup of G, called the
cyclic subgroup generated by a.
Moreover, it is the smallest
subgroup of G containing a, in
that if $H \leq G$ and $a \leq H$, then
 $\langle a \rangle \leq H$.
Proof: We use the subgroup criterion.
 $\cdot \langle a \rangle \neq \emptyset$, since $a^* = e \in \langle a \rangle$.
 $\cdot TS = a h \in \langle a \rangle$ then $a = a^*$ and

• If $g, h \in \langle a \rangle$, then $g = a^{k}$ and $h = a^{k}$ for some $k, l \in \mathbb{Z}$. Thus, $gh^{-1} = a^{k} a^{-l} = a^{k-l} \in \langle a \rangle$. So $\langle a \rangle \in G$.

Now, suppose a & H for some subgroup H≤G. Then • a° = e e H (Identity) · ak e H for all kelN (closure) · a · (Inverses) • a = (a) k e H for all kelN (closure) So $\langle a \rangle \leq H$. Note: In an additive group (like Z or Zn), (a) = {ka | keZ}. Ex: In \mathbb{Z} , $\langle n \rangle = n\mathbb{Z} = \langle -n \rangle$. Ex: In \mathbb{Z}_{10} , $\langle 1 \rangle = \mathbb{Z}_{10}$, $\langle 2 \rangle = \{0, 2, 4, 6, 8\}$, (5) = {0, 5}, etc.

Ex: In U(12),

$$\langle 1 \rangle = \{ 1 \}$$

 $\langle 5 \rangle = \{ 1, 5 \}$
 $\langle 7 \rangle = \{ 1, 7 \}$
 $\langle 11 \rangle = \{ 1, 11 \}.$