

$$E_{x}: U(q) = \{1, 2, 4, 5, 7, 8\} \text{ is cyclic.}$$
One generator is 2. (Check!)
$$\frac{\text{Properties of cyclic groups}}{\text{Thm}: Eveny cyclic group is abelian.}$$

$$\frac{\text{Proof: Lef } G = \langle a \rangle \text{ be a cyclic group with generator a.}$$

$$\text{Let } g, h \in G. \text{ Then } g = a^{k} \text{ and } h = a^{k} \text{ for some } k, l \in \mathbb{Z}, \text{ so}$$

$$gh = a^{k}a^{k} = a^{k+k} = a^{k+k} = a^{k}a^{k} = hg.$$

Thm: Let G be a group and a G. ① If lal=neN, then e, a, a², ..., aⁿ⁻¹ are distinct elements of G (i.e. no tuo are equal). ② If $|a| = \infty$, then for all $k, l \in \mathbb{Z}$, if $k \neq l$, then $a^k \neq a^l$. Proof: First, suppose k,l & W with $a^{\mathbf{k}} = a^{\mathbf{l}}$ Then $e = a^{1}(a^{k})^{-1} = a^{1}a^{-k} = a^{1-k}$. For (1), note that if $0 \le k \le l \le n-l$, then $0 \le l \le h \le n-l$. Since |a| = n, $l \le k$ a^{l-k} = e is only possible ulen l=k.

Case I:
$$|a| = n \in \mathbb{N}$$
.
Then $e = a^{\circ}, a^{\circ}, ..., a^{n-1} \in G$ are
distinct elements by the theorem,
so $|G| \ge n$.
On the other hand, let $g \in G$.
Then $g = a^{k}$ for some $k \in \mathbb{Z}$. By
the division algorithm,
 $k = ng + r$

for unique
$$q, r \in \mathbb{Z}$$
 with $0 \le r \le n-1$.
Thus,
 $q = a^k = a^{n_2 + r}$
 $= (a^n)^2 a^r$
 $= e^2 a^r$
That is, $q \in \{e, a, ..., a^{n-1}\}$, proving $161 \le n$.
Together, we have $161 = n$.

Case 2:
$$|a| = \infty$$
.
By the theorem, $|G| = |\langle a \rangle| = \infty$,
Since $a^{k} \neq a^{k}$ for integers $k \neq l$.

Proof: Let
$$G = \langle a \rangle$$
 be a cyclic group
with generator a .
Suppose $H \leq G$ is a subgroup.
Case I: $H = \{e\}$ is the trivial subgroup.
Then $H = \langle e \rangle$ is cyclic.

Then, since G=(a), H must contain some nonzero power of a.

Claim:
$$H = \langle a^k \rangle$$
, so H is cyclic.
Since $a^k \in H$, we have $\langle a^k \rangle \in H$.
So we only need to prove the
reverse containment.

Let
$$h \in H$$
. Then, since $h \in G = \langle a \rangle$,
we have $h = a^m$ for some $m \in \mathbb{Z}$.

By the division algorithm,

$$m = kq + r$$

for $q, r \in \mathbb{Z}$ with $0 \le r \le L-1$.

Thus,

$$h = a^{m} = (a^{k})^{2} \cdot a^{r},$$
so by closure we have

$$a^{r} = h (a^{k})^{-2} \in H.$$
Since $0 \le r \le k$, we must have
 $r=0$ by minimality of k.
Hence, $h = (a^{k})^{2} \in \langle a^{k} \rangle,$
proving $H \le \langle a^{k} \rangle,$ as desired.