Recall: For $a \in G,\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}$ is the cyclic subgroup of G generated by a.

Def: Let G be a group. If

$$
G=\langle a\rangle
$$

for some $a \in G$, then we say that G is a cyclic group and a is a generator of G.

Ex: \mathbb{Z} is cyclic, and 1 is a generator. -1 is also a generator.

Ex: \mathbb{Z}_{12} is cyclic, and 1 is a generator.
What are other generators?
Ex: $U(12)$ is not cyclic, since $\langle a\rangle \neq U(12)$ for all $a \in U(12)$.

Ex: $U(9)=\{1,2,4,5,7,8\}$ is cyclic.
One generator is 2 . (Check!)

Properties of cyclic groups
Thu: Every cyclic group is abelian.
Proof: Let $G=\langle a\rangle$ be a cyclic group with generator a.
Let $g, h \in G$. Then $g=a^{k}$ and $h=a^{l}$ for some $k, l \in \mathbb{Z}$, so

$$
g h=a^{k} a^{l}=a^{k+l}=a^{l+k}=a^{l} a^{k}=h g .
$$

Thu: Let G be a group and $a \in G$.
(1) If $|a|=n \in \mathbb{N}$, then

$$
e, a, a^{2}, \ldots, a^{n-1}
$$

are distinct elements of G iii. no tho are equal).
(2) If $|a|=\infty$, then for all $k, l \in \mathbb{Z}$, if $k \neq l$, then $a^{k} \neq a^{l}$.

Proof: First, suppose $k, l \in \mathbb{Z}$ with

$$
a^{k}=a^{l} .
$$

Then $e=a^{l} \cdot\left(a^{k}\right)^{-1}=a^{l} a^{-k}=a^{l-k}$.
For (1), note that if $0 \leqslant k \leqslant l \leqslant n-1$, then $0 \leq l-k \leq n-1$. Since $|a|=n$, $a^{l-k}=e$ is only possible wien $l=k$.

For (2), $a^{l-k}=e$ implies $l-k=0$ when $|a|=\infty$. Hence $a^{k}=a^{l}$ implies $l=k$.

Corollary: Let $G=\langle a\rangle$ be a cyclic group with generator a. Then $|G|=$ la.

Proof: Either $|a|<\infty$ or $|a|=\infty$.

Case 1: $|a|=n \in \mathbb{N}$.
Then $e=a^{0}, a^{0}, \ldots, a^{n-1} \in G$ are distinct elements by the theorem, so $|G| \geq n$.

On the other hand, let $g \in G$. Then $g=a^{k}$ for some $k \in \mathbb{Z}$. By the division algorithm,

$$
k=n q+r
$$

for unique $q, r \in \mathbb{Z}$ with $0 \leq r \leq n-1$.
Thus,

$$
\begin{aligned}
g=a^{k} & =a^{n q+r} \\
& =\left(a^{n}\right)^{q} a^{r} \\
& =e^{q} a^{r} \\
& =a^{r} .
\end{aligned}
$$

That is, $g \in\left\{e, a, \ldots, a^{n-1}\right\}$, proving $|G| \leqslant n$.
Together, we have $|6|=n$.

Case 2: $|a|=\infty$.
By the theorem, $|G|=|\langle a\rangle|=\infty$, Since $a^{k} \neq a^{l}$ for integers $k \neq l$.

Corollary: If G is a finite group, then $|a| \leq|G|$ for all $a \in G$, with equality if and only if $G=\langle a\rangle$.

Proof: By the previous corollary, $\langle a\rangle$ is a subset of G of cardinality $|a|$. The result then follows.

Subgroups of a cyclic group

The: Every subgroup of a cyclic group is cyclic.

Proof: Let $G=\langle a\rangle$ be a cyclic group with generator a.
Suppose $H \leq G$ is a subgroup.
Case 1: $H=\{e\}$ is the trivial subgroup. Then $H=\langle e\rangle$ is cyclic.

Case 2: H is nontrivial.
Then, since $G=\langle a\rangle$, 1 must contain some nonzero power of a.

Let $k \in \mathbb{N}$ be the smallest positive integer such that $a^{k} \in H$.
Note: Since H is closed under inverses, and $H \neq\{e\}$, H must contain some positive power of a.

Claim: $H=\left\langle a^{k}\right\rangle$, so H is cyclic.
Since $a^{k} \in H$, we have $\left\langle a^{k}\right\rangle \leq H$. So we only need to prove the reverse containment.

Let $h \in H$. Then, since $h \in G=\langle a\rangle$, we have $h=a^{m}$ for some $m \in \mathbb{Z}$.

By the division algorithm,

$$
m=k q+r
$$

for $q, r \in \mathbb{Z}$ with $0 \leq r \leqslant L-1$.

Thus,

$$
{\underset{\epsilon H}{h}}_{h_{\epsilon}}=a^{m}=\frac{\left(a^{k}\right)^{q}}{\varepsilon} \cdot a^{r} \text {, }
$$

so by closure we have

$$
a^{r}=h\left(a^{k}\right)^{-r} \in H .
$$

Since $0 \leqslant r<k$, we must have $r=0$ by minimality of k.

Hence, $h=\left(a^{k}\right)^{q} \in\left\langle a^{k}\right\rangle$, proving $H \leqslant\left\langle a^{k}\right\rangle$, as desired.

