Recall: A cyclic group
$$G = \langle a \rangle$$
 is one
of two "flavors"

Case I: $|G| = |a| = \infty$. Then we proved
for all $k, l \in \mathbb{Z}$, $k \neq l \Rightarrow a^{k} \neq a^{l}$.
Thus,
 $G = \{a^{k} \mid k \in \mathbb{Z}\} = \{\dots, a^{3}, a^{2}, a^{-1}, e, a, a^{2}, \dots \},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\} = \{\dots, a^{3}, a^{-2}, a^{-1}, e, a, a^{2}, \dots \},$
 $G = \{a^{k} \mid k \in \mathbb{Z}\} = \{\dots, a^{3}, a^{-2}, a^{-1}, e, a, a^{2}, \dots \},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\} = \{\dots, a^{3}, a^{-2}, a^{-1}, e, a, a^{2}, \dots \},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\} = \{\dots, a^{3}, a^{-2}, a^{-1}, e, a, a^{2}, \dots \},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\} = \{\dots, a^{3}, a^{-2}, a^{-1}, e, a, a^{2}, \dots \},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\} = \{\dots, a^{3}, a^{-2}, a^{-1}, e, a, a^{2}, \dots \},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\},$
 $C = \{a^{k} \mid k \in \mathbb{Z}\},$

Such a function is called an isomorphism, and he say that Z and G are isomorphic groups. Essentially, this says that Z and G are "the same group," it's just that we've labeled the elements (and the group operation) differently. So

Every infinite cyclic group is isomorphic to - i.e., it "looks the same as" - the group of integers Z.

Something similar happens for finite cyclic groups.

Case Z:
$$|G| = |a| = n \in N$$
.
Then we proved that for all $k, l \in \mathbb{Z}$ with $0 \le k, l \le n-1$,
 $k \ne l \implies a^k \ne a^l$.

Slightly more generally, if
$$L, l \in \mathbb{Z}$$
,
then
 $a^{k} = a^{l} \iff n | (l - k)$
 $\iff k = l \pmod{n}$

•

Equivalently, this says that
the function
$$G: \mathbb{Z}_n \to G = \langle a \rangle$$

 $h \mapsto a^h$ Note: This is
hell-defined!
is an isomorphism.

Thus,

Eveny cyclic group of finite order n is isomorphic to Zn.

The order of
$$a^{k}$$

Lemma: Let G be a group and let
 $a^{e}G$ be an element of finite order.
If $a^{m} = e$ for some $m \in \mathbb{Z}$, then
lal divides m .
Proof: We have already proved this:
 $a^{m} = e = a^{\circ} \implies n \mid (m-\circ),$
where $n = \mid a \mid$.

$$P_{roof}$$
: We have already proved this:
 $a^{m} = e = a^{0} \iff n \mid (m-0),$
where n = |a|.

Lemma: Let $x, y, z \in \mathbb{N}$. If x|yz and gcd(x,y)=1, then x|z. Proof: Math 3345 (look at unique prime fuctorizations).

(2) Suppose
$$|a| = n \in IN$$
, and let $d = \gcd(n, k)$.
Then
 $(a^k)^{\frac{n}{k}} = (a^n)^{\frac{k}{k}} = e^{\frac{k}{k}} = e,$
 $Mate: \frac{n}{k}, \frac{k}{k} \in IN$ since $d = \gcd(n, k)$.
So $|a^k|$ is finite. Write $|a^k| = m \in IN$.
By the first lemma, $m | \frac{n}{k}$.
By the first lemma, $m | \frac{n}{k}$.
On the other hand,
 $(a^k)^m = a^{km} = e,$
So the lemma also tells us
that $n | km$.
This means $km = n l$ for some
 $l \in IN$. Dividing by d, we have
 $\frac{k}{k} \cdot m = \frac{n}{k} \cdot l$.

So
$$\frac{\pi}{d} | (\frac{k}{d} \cdot m)$$
. But $gcd(\frac{\pi}{d}, \frac{k}{d}) = |$
(My?), so the second lemma
yields $\frac{\pi}{d} | m$.
Since $\frac{\pi}{d}$ and m are positive
integers dividing each other, re
have $m = \frac{\pi}{d}$, as desired.

η

Corollary: Let G = (a) be a cyclic
group generated by a.
() If
$$|a| = \infty$$
, then a^{h} generates
G if and only if $h = \pm 1$.
(2) If $|a| = n \in \mathbb{N}$, then a^{k} generates
G if and only if $gcd(n, h) = 1$.

Proof: (1) Let
$$k \in \mathbb{Z}$$
 and suppose $\langle a^k \rangle = G$.
Then $a \in G = \langle a^k \rangle$, so
 $a = (a^k)^l = a^{kl}$.
for some $l \in \mathbb{Z}$.
Since $|a| = \infty$, its powers are
distinct. Thus, $|=kl$, so either
 $k = l = l$ or $k = l = -l$.
(2) If $|a| = n$, then $|G| = n$, so
 $\langle a^k \rangle = G$ if and only if $|a^k| = n$
also.
By the theorem, this is equivalent
to
 $\frac{n}{\gcd(n,k)} = n$,
i.e., $\gcd(n,k) = l$.