Recall: A cyclic group $G=\langle a\rangle$ is one of two "flavors"

Case 1: $|G|=|a|=\infty$. Then we proved
for all $k, l \in \mathbb{Z}, \quad k \neq l \Rightarrow a^{k} \neq a^{l}$.
Thus,

$$
G=\left\{a^{k} \mid k \in \mathbb{Z}\right\}=\left\{\ldots, a^{-3}, a^{-2}, a^{-1}, e, a, a^{2}, \ldots\right\},
$$

τ distinct elements
and multiplication in G corresponds to addition of exponents.
Here is an alternative way to say this: The function

$$
\begin{gathered}
f: \mathbb{Z} \longrightarrow G=\langle a\rangle \\
k \longmapsto a^{k}
\end{gathered}
$$

is a bijection, and

$$
f(k+l)=a^{k+l}=a^{k} \cdot a^{l}=f(k) \cdot f(l)
$$

for all $k, l \in \mathbb{Z}$.

Such a function is called an isomorphism, and we say that \mathbb{Z} and G are isomorphic groups.

Essentially, this says that \mathbb{Z} and G are "the same group." it's just that we've labeled the elements (and the group operation) differently.

So

Every infinite cyclic group is isomorphic to - ie., it "looks the same as" - the group of integers \mathbb{Z}.

Something similar happens for finite cyclic groups.

Case 2: $|G|=|a|=n \in \mathbb{N}$.
Then we proved that for all $k, l \in \mathbb{Z}$ with $0 \leq k, l \leq n-1$,

$$
k \neq l \Rightarrow a^{k} \neq a^{l} .
$$

Slightly more generally, if $L, l \in \mathbb{Z}$, then

$$
\begin{aligned}
a^{k}=a^{l} & \Longleftrightarrow n \mid(l-k) \\
& \Longleftrightarrow k \equiv l(\bmod n)
\end{aligned}
$$

It follows that

$$
G=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}
$$

${ }^{\top}$ distinct elements
and multiplication in G corresponds to addition of exponents modulo n.

Equivalently, this says that the function

$$
\begin{aligned}
& \varphi: \mathbb{Z}_{n} \rightarrow G=\langle a\rangle \\
& k \mapsto a^{k} \quad \text { Note: Tins in' } \\
& \text { nelldicind! }
\end{aligned}
$$

is an isomorphism.
Thus,
Every cyclic group of finite order n is isomorphic to \mathbb{Z}_{n}.

The order of a^{k}

Lemma: Let G be a group and let $a \in G$ be an element of finite order.
If $a^{m}=e$ for some $m \in \mathbb{Z}$, then $|a|$ divides m.

Proof: We have already proved this:

$$
a^{m}=e=a^{0} \Leftrightarrow n \mid(m-0),
$$

where $n=|a|$.

Lemma: Let $x, y, z \in \mathbb{N}$. If $x \mid y z$ and $\operatorname{gcd}(x, y)=1$, then $x \mid z$.

Proof: Math 3345 (look at unique prime factorizations).

Thu: Let G be a group and $x \in G$.
(i) If $|a|=\infty$, then $\left|a^{k}\right|=\infty$ for all $k \in \mathbb{N}$.
(2) If $|a|=n \in \mathbb{N}$, then

$$
\left|a^{k}\right|=\frac{n}{g c d(n, k)}
$$

for all $k \in \mathbb{N}$.

Note: $\left|a^{-k}\right|=\left|a^{k}\right|$, so this tells us the orders of negative powers too ($H \omega 7$).

Proof: (1) We prove the contrapositive.
Suppose $\left|a^{k}\right| \neq \infty$, so $\left|a^{k}\right|=m \in \mathbb{N}$.
Then

$$
\left(a^{k}\right)^{m}=a^{h m}=e,
$$

where $k m \in \mathbb{N}$. Thus, $|a| \leq k m$ is finite.
(2) Suppose $|a|=n \in \mathbb{N}$, and let $\operatorname{d}=\operatorname{ged}(n, k)$.

Then

$$
\left(a^{h}\right)^{\frac{n}{d}}=\left(a^{n}\right)^{\frac{k}{2}}=e^{\frac{k}{x}}=e
$$

Note: $\frac{n}{d}, \frac{k}{d} \in \mathbb{N}$ since $d \cdot \operatorname{ggd}(n, k)$.
so $\left|a^{k}\right|$ is finite. Write $\left|a^{k}\right|=m \in \mathbb{N}$.
By the first lemma, $m / \frac{n}{d}$.

On the other hand,

$$
\left(a^{k}\right)^{m}=a^{k m}=e,
$$

so the lemma also tells us that n / km.

This means $k_{m}=n l$ for some $l \in \mathbb{N}$. Dividing by d, we have

$$
\frac{k}{d} \cdot m=\frac{n}{d} \cdot l .
$$

So $\frac{n}{d} \left\lvert\,\left(\frac{k}{d} \cdot m\right)\right.$. But $\operatorname{gcd}\left(\frac{n}{d}, \frac{b}{d}\right)=1$ (Why?), so the second lemma yields $\frac{n}{d} / \mathrm{m}$.

Since $\frac{n}{d}$ and m are positive integers dividing each other, we have $m=\frac{n}{d}$, as desired.

Corollary: Let $G=\langle a\rangle$ be a cyclic group generated by a.
(1) If $|a|=\infty$, then a^{k} generates G if and only if $k= \pm T$.
(2) If $|a|=n \in \mathbb{N}$, then a^{k} generates G if and only if $\operatorname{gcd}(n, k)=1$.

Proof: (1) Let $k \in \mathbb{Z}$ and suppose $\left\langle a^{k}\right\rangle=G$. Then $a \in G=\left\langle a^{k}\right\rangle$, so

$$
a=\left(a^{k}\right)^{l}=a^{k l} .
$$

for some $l \in \mathbb{Z}$.

Since $|a|=\infty$, its powers are distinct. Thus, $1=k l$, so either $k=l=1$ or $k=l=-1$.
(2) If $|a|=n$, then $|G|=n$, so $\left\langle a^{k}\right\rangle=G$ if and only if $\left|a^{k}\right|=n$ also.

By the theorem, this is equivalent

$$
\frac{n}{\operatorname{gcd}(n, k)}=n,
$$

ie., $\quad \operatorname{gcd}(n, k)=1$.

