

So if $H \leq G$, then $H = \langle a^k \rangle$ for some $L \in \mathbb{Z}$. We also know the order of a^k (Lecture 12).

Thm: Let
$$G = \langle a \rangle$$
 be a cyclic group.
(1) If $|a| = \infty$, then $\langle a^{k} \rangle = \langle a^{d} \rangle$ if
and only if $k = \pm l$.
Hence, a complete list of subgroups of G
is $\{e\} = \langle a \rangle$, $G = \langle a \rangle$, $\langle a^{2} \rangle$, $\langle a^{3} \rangle$, ...

Moreover, these are all subgroups of
G, since
$$\langle a^{L} \rangle = \langle a^{\text{sud}(k,n)} \rangle$$
 for all $k \in \mathbb{Z}$.
Proof: ① Suppose $|a| = \infty$ and $\langle a^{L} \rangle = \langle a^{d} \rangle$
for some $k, l \in \mathbb{Z}$.
Then $a^{L} \in \langle a^{d} \rangle$, so
 $a^{L} = \langle a^{d} \rangle^{m} = a^{dm}$
for some $m \in \mathbb{Z}$. Since $|a| = \infty$, this
implies $k = dm$, so $d \mid k$.
By identical reasoning, $k \mid l \mid a \mid so$.
Thus, $k = \pm l$.
② Now, suppose $|a| = n \mid and \mid d \mid n$.
Since $g \in d(\hat{\pi}, n) = \hat{\pi}$, we have
 $|\langle a^{n/d} \rangle| = |a^{n/d}| = \frac{n}{(n/d)} = d$,
proving existence.

For uniqueness, suppose
$$H \notin G$$
 and
 $|H| = d$. Since H is cyclic, $H = \langle a^{L} \rangle$
for some integer L .
Now,
 $d = |H| = |a^{L}| = \frac{n}{gcd(n,L)}$,
so $gcd(n,L) = \frac{n}{d}$. In particular,
 $\frac{n}{d}$ divides L , so $X^{L} \in \langle X^{n/d} \rangle$.
Hence,
 $\langle X^{L} \rangle \notin \langle X^{n/d} \rangle$.
Since these subgroups have the same
(finite) order, we have $\langle X^{L} \rangle = \langle X^{n/d} \rangle$.
Finally, for any $L \notin Z$, the
egantion
 $|a^{L}| = \frac{n}{gcd(L,n)}$
Shows that $|a^{L}|$ is a divisor of n .
Hence, by uniqueness, $\langle a^{L} \rangle = \langle a^{n/lnLl} \rangle$
 $= \langle a^{gcd(L,n)} \rangle$.

Ex:
$$\mathbb{Z}$$
 is an infinite cyclic group,
so its subgroups have
 $\{0\} = \langle 0 \rangle$
 $\mathbb{Z} = \langle 1 \rangle$
 $\mathbb{Z} = \langle 2 \rangle$
 $\mathbb{Z} = \langle 2 \rangle$
 $\mathbb{Z} = \langle 2 \rangle$
 $\mathbb{Z} = \langle 3 \rangle$
 $\mathbb{Z} = \langle 4 \rangle$
 $\mathbb{Z} = \mathbb{Z} = \mathbb{Z}$

$$\underline{E_{X}}: \mathbb{Z}_{20} . \quad Divisors \quad of \quad 20 \quad are \quad 1,2,4,5,10,20, so \quad the subgroups \quad are \\ \cdot \left\langle \frac{20}{1} \right\rangle = \left\langle 20 \right\rangle = \left\langle 0 \right\rangle = \left\{ 0 \right\} \\ \cdot \left\langle \frac{20}{2} \right\rangle = \left\langle 10 \right\rangle \\ \cdot \left\langle \frac{20}{4} \right\rangle = \left\langle 5 \right\rangle = \left\langle 15 \right\rangle \\ \cdot \left\langle \frac{20}{5} \right\rangle = \left\langle 4 \right\rangle = \left\langle 8 \right\rangle = \left\langle 12 \right\rangle = \left\langle 16 \right\rangle \\ \cdot \left\langle \frac{20}{10} \right\rangle = \left\langle 2 \right\rangle = \left\langle 6 \right\rangle = \left\langle 14 \right\rangle = \left\langle 18 \right\rangle \\ \cdot \left\langle \frac{20}{20} \right\rangle = \left\langle 1 \right\rangle = \mathbb{Z}_{20} = \left\langle 3 \right\rangle = \left\langle 7 \right\rangle = \left\langle 9 \right\rangle \\ = \left\langle 11 \right\rangle = \left\langle 13 \right\rangle = \left\langle 17 \right\rangle = \left\langle 19 \right\rangle$$

$\left\langle \frac{20}{d_1} \right\rangle \leq \left\langle \frac{20}{d_2} \right\rangle$	()	d, 1 d2
	()	$\frac{20}{d_2}$ $\frac{20}{d_1}$



