The Symmetric Group
Let A be a set the set

$$
S_{A}=\{f: A \rightarrow A \mid f \text { is a bijection }\}
$$

is a group under ${ }^{\circ}$, called the symmetric group on A. Elements of S_{A} are called permutations of A.

When $A=\{1,2, \ldots, n\}$, we unite S_{n} instead of S_{A}.

On HW8, you studied S_{3}.
Ex: S_{1} is the trivial group, since the only bijection

$$
f:\{1\} \rightarrow\{1\}
$$

is the identity.

Ex: S_{2} is cyclic of order 2 , since the only non-identity bijection

$$
f:\{1,2\} \rightarrow\{1,2\}
$$

is given by $f(1)=2$ and $f(2)=1$, so $f^{2}=f \circ f=i d$.

Observation: For $n \geqslant 3, S_{n}$ is non-abelian.

You proved this on HW 8.

Observation: $\left|S_{n}\right|=n$!

n choices	for	$f(1)$	
$n-1$	".		$f(2)$
1	choice		$f(n-1)$

Ex: Let $\sigma, r \in S_{y}$ be defined by

$$
\begin{array}{rlrl}
\sigma:\{1,2,3,4\} & \rightarrow\{1,2,3,4\} \\
1 & \text { and } & \begin{aligned}
1:\{1,2,3,4\} & \rightarrow\{1,2,3,4\} \\
2 & \mapsto 2
\end{aligned} & 1 \\
2 & \mapsto 3 \\
3 & \mapsto 4 & & \mapsto 3 \\
4 & \mapsto 1 & & \mapsto 2 \\
4 & \mapsto 1
\end{array}
$$

Then $\sigma \tau=\sigma \circ \tau$ is

$$
\begin{aligned}
& 1 \mapsto 4 \mapsto 1 \\
& 2 \mapsto 3 \mapsto 4 \\
& 3 \mapsto 2 \mapsto 2 \\
& 4 \longmapsto 1 \mapsto 3
\end{aligned}
$$

and $T \sigma=T \cdot \sigma$ is

$$
\begin{aligned}
& 1 \mapsto 3 \mapsto 2 \\
& 2 \mapsto 2 \mapsto 3 \\
& 3 \mapsto 4 \mapsto 1 \\
& 4 \mapsto 1 \mapsto 4
\end{aligned}
$$

Two-line notation
We can condense the description of σ and τ in the example above by uniting

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 1
\end{array}\right), \quad T=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
\sigma T & =\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
(3) & 2 & 4 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{array}\right)
\end{aligned}
$$

where we work right-to-left, since $\sigma T=\sigma \circ T$ is a function composition.

Compute TO similarly.

