Important facts about cycle notation:

- Disjoint cycles commute (Book Prop 5.8)
- Every permutation is a product of disjoint cycles (Book The 5.9), unique up to reordering.

Ex: The elements of S_{y}, by cycle type:

Transpositions
A 2-cycle is also called a transposition.
HW 10: Every cycle is a product of (non-disjoint!) transpositions.

$$
\text { Ex: } \begin{aligned}
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) & =\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)
\end{aligned}
$$

Since every permutation is a product of cycles, this means every permutation can be uritten as a product of transpositions.

We say " S_{n} is generated by transpositions."

As the example shows, writing $\sigma \in S_{n}$ as a product of transpositions is not unique.

However...
Thu: Let $\sigma \in S_{n}$. Then either

- Any expression of σ as a product of transpositions contains an even number of transpositions,
OR
- Any expression of σ as a product of transpositions contains an odd number of transpositions.

In the first case, we say σ is an even permutation and write $\operatorname{sgn}(\sigma)=1$.

In the second case, we say σ is an odd permutation and write $\operatorname{sgn}(\sigma)=-1$.

The number $\operatorname{sgn}(\sigma) \in\{1,-1\}$ is called the sign or signature of σ.

Ex: We san above that $\operatorname{sgn}(1233)=1$, ie., $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ is an even permutation.
The sign depends only on the cycle type, so every 3-cycle is even.

Ex: S_{y} again
Cycle type Permutations
$\operatorname{Even}(1,1,1,1)$
$(1)(2)(3)(4)=e$
odd $(2,1,1)$
Even $(3,1)$
$(12),(13), \ldots,(34)$
odd (4) (1234), $\ldots,\left(\begin{array}{ll}143 & 2\end{array}\right) 6$
Even $(2,2) \quad(12)(34),(13)(24),(14)(23) \quad 3$

We will prove the theorem on Wednesday.

Dihedral groups
Def: Let $n \geq 3$. The dihedral group is the group of symmetries of a regular n-gan.

Notes: -Regular = all angles equal/all sides same length $\Delta, \square, 0$, etc.

- Symmetry = rigid motion preserving the shape
- Group operation $=$ composition

What are the elements of D_{n} ?
Pick a vertex v.
A symmetry must map v to one of the n vertices.

Its neighbors must come along, and can be in one of two orientations.

Once we know whee v and its neighbors are, we know where every vertex is.
So $\quad\left|D_{n}\right|=2 n$

Ex: D_{4} The 8 symmetries map \square^{2} to one of

Let r be the counterclockwise rotation by $\frac{2 \pi}{n}$ radians.
Then $|r|=n$, so $\langle r\rangle=\left\{e, r, r^{2}, \ldots, r^{n-1}\right\}$ is a cyclic subgroup containing half the elements in Dr.

To find the other n, let s be the reflection fixing vertex v.

Claim: The other n elements of D_{n} are $s, s r, s r^{2}, \ldots, s r^{n-1}$.

Proof: First, note that $s \neq r^{i}$ for any i, since r^{i} preserves the ordering of v 's neighbors and s switches this ordering.

Now, suppose $s r^{i}=s r^{j}$. By cancellation, $r^{i}=r^{j}$, so $i=j(\bmod n)$.

In particular, $s, s r, \ldots, s r^{n-1}$ are pairwise distinct, and none is in $\langle r\rangle$.

So we now know

$$
D_{n}=\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

