$$\frac{Transpositions}{A \quad 2-cycle \quad is \quad also \quad called \quad a \quad transposition.}$$

$$\frac{HW \quad 10: \quad Eveny \quad cycle \quad is \quad a \quad product \quad of \quad (non-disjoint!) \quad transpositions.}$$

$$\frac{E_{x}: \quad (1 \quad 2 \quad 3) = (1 \quad 2) \quad (2 \quad 3) \quad = (1 \quad 3) \quad (1 \quad 2) \quad = (1 \quad 2) \quad (1 \quad 3) \quad (1 \quad 2) \quad = (1 \quad 2) \quad (1 \quad 3) \quad (1 \quad 2)$$

Since every permutation is a product of cycles, this means every permutation can be written as a product of transpositions. We say "Sn is generated by transpositions."

As the example shows, writing or Sn as a product of transpositions is not unique. Hovever... Thm: Let o & Sn. Then either · Any expression of σ as a product of transpositions contains an even number of transpositions, or ·Any expression of or as a product of transpositions contains an odd number of transpositions. In the first case, we say σ is an <u>even permutation</u> and write sgn(σ)=1. In the second case, we say or is an odd permutation and write sgn (o)=-1.

The number
$$sgn(\sigma) \in \{1, -1\}$$
 is
called the sign or signature of σ .

Ex: We saw above that $gn((121)) = 1$,
i.e., (123) is an even permutation.
The sign depends only on the
cycle type, so every 3-cycle is even.

Ex: Sy again
Cycle type Permutations #

Even $(1,1,1,1)$ $(1)(2)(3)(4) = e$ 1
odd $(2,1,1)$ $(12)(3)(4) = e$ 1
Even $(3,1)$ $(123), ..., (34)$ 6
Even $(3,1)$ $(123), ..., (243)$ 8
odd (4) $(1234), ..., (1432)$ 6

(1234),..., (1432) 6

(12)(34), (13)(24), (14)(23) 3

Eren (2,2)

We will prove the theorem on Wednesday. Dihedral groups Def: Let n?3. The <u>dihedral group</u> is the group of symmetries of a regular n-gon. <u>Notes</u>: Regular = all angles equal/all sides same length Δ , \Box , \Box , c, etc. • Symmetry = rigid motion preserving the shape · Group operation = composition

Let r be the counterclochnise rotation by $\frac{2\pi r}{n}$ radians. Then |r| = n, so $\langle r \rangle = \{e, r, r^2, ..., r^{n-1}\}$ is a cyclic subgroup containing half the elements in Dn. To find the other n, let s be the reflection fixing vertex v. Claim: The other n elements of Dn are s, sr, sr²,..., srⁿ⁻¹.

Proof: First, note that $s \neq r^{i}$ for any i, since rⁱ preserves the ordering of v's neighbors and s suitches this ordering.

Now, suppose sri=sri. By concellation, ri=ri, so i=j (mod n). In particular, S, Sr, ..., Srn-1 are pairwise distinct, and none is in (r). So we now know $D_n = \{e, r, r^2, ..., r^{n-1}, s, sr, sr^2, ..., sr^{n-1}\}.$