$$
D_{n}=\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

where $r=2 \pi / n$ radian rotation connterclackuise
$s=\begin{aligned} & \text { reflection across line of symmetry } \\ & \text { through vertex } v\end{aligned}$ through vertex v.

Warm-Up: Draw the 10 elements of D_{5} as symmetries of \square.

Prop: In D_{n},
(1) $|s|=\left|s r^{i}\right|=2$
(2) $r s=s r^{-1}$
(equivalently, $s r^{-s}=r^{-1}$)
(3) $r^{i} s=s r^{-i}$.

Proof: (1) $s \neq e$ but $s^{2}=e$ (look at v and its neighbors), so $|s|=2$.
Weill come back for $s r^{i}$.
(2) $r s:$

$s r^{-1}:$

(3) Induct on i :

$$
\begin{aligned}
r^{i+1} s=r\left(r^{i} s\right) & =r\left(s r^{-i}\right) \\
& =(r s) r^{-i} \\
& =\left(s r^{-1}\right) r^{-i} \\
& =s r^{-i}
\end{aligned}
$$

(1) Continued: $s r^{i} \neq e$, but

$$
\left(s r^{i}\right)^{2}=s r^{i} s r^{i}=s s r^{-i} r^{i}=s^{2}=e,
$$

so $\left|s r^{i}\right|=2$.

We have the presentation

$$
D_{n}=\langle\underbrace{r, s}_{\text {enerentions }} \mid \underbrace{\left.r^{n}=s^{2}=e, r s=s r^{-1}\right\rangle}_{\text {Relations }}\rangle
$$

Ex: $I_{n} D_{s}$,

$$
\begin{aligned}
\underline{s}^{3} r s r^{3} \underline{s}^{2} r^{4} s & =s r s\left(r^{3} r^{4}\right) s \\
& =s r s r^{7} s \\
& =s r s\left(r^{2} s\right) \\
& =s r s s r^{-2} \\
& =s r r^{3} \\
& =s r^{4} .
\end{aligned}
$$

