We have the presentation

$$
D_{n}=\langle\underbrace{r, s}_{\text {Genentiors }}| \underbrace{\left.r^{n}=s^{2}=e, r s=s r^{-1}\right\rangle}_{\text {Relations }} .
$$

This means:
(1) Every element in D_{n} is obtained as a product involving r 's and s 's We proved $D_{n}=\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, \ldots, s r^{n-1}\right\}$
(2) Every equality of elements in D_{n} can be deduced from the given relations.
They allow us to write any product in the standard form, $s^{i} r^{j}$ for $0 \leq i \leq 1,0 \leq j \leq n-1$.

Warm-Up: In D_{s}, write the following elements in the form sirs.
i) $r^{4} s r s$
ii) $\left(r^{3} s^{3}\right)^{-1}$
iii) $s^{3} r s r^{3} s^{2} r^{4} s$

Permutation Representation of D_{n}
Here is how the book introduces D_{n}.
Label the vertices of a regular n-gon as $1,2, \ldots, n$.

Then r and s each induce permutations of $\{1,2, \ldots, n\}$, so they correspond to elvenets in S_{n}. They generate a subgroup of S_{n} isomorphic to $D_{D_{n}}$.
Ex: $n=5$

Then

$$
\begin{aligned}
& r=\left(\begin{array}{lllll}
1 & 5 & 4 & 3 & 2
\end{array}\right) \\
& s=\left(\begin{array}{ll}
2 & 5
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right),
\end{aligned}
$$

and it's ears to check that $r^{5}=s^{2}=$ and $r s=(15)(24)=s r^{-1}$.

Generators and relations
In general, a set $S \leqslant G$ generates G if every element in G can be written as a product of elements in S (and their inverses).

A relation in G is an equation involving elements of G.

A presentation of G consists of a generating set S and a set of relations R such that every relation in G is implied by R.

Write $G=\langle S \mid R\rangle$.

Ex: The quaternion group is

$$
Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}
$$

where

- 1 is the identity
- -1 multiplies the nay you think it should $($ e.g, $(-1), i=-i,(-1) j=-j$, etc. $)$
- $i^{2}=j^{2}=k^{2}=-1$
- $i j=k, \quad j k=i, \quad k_{i}=j$
- jim $=-k, \quad L_{j}=-i, \quad i k=-j$

The: Q_{8} is a group.
Proof: Check associativity (easy but tedious).

A presentation allows us to define Q_{8} more compactly. Here is one:

$$
Q_{8}=\left\langle-1, i, j, k \mid(-1)^{2}=1, i^{2}=j^{2}=L^{2}=i j k=-1\right\rangle .
$$

It takes work to show this is correct!

For example, we can deduce $i j=k$ from

$$
i j k=-1=k^{2}
$$

So by cancellation $i j=k$.
Here is a more compact presentation:

$$
Q_{8}=\left\langle i, j \mid i^{4}=1, \quad i^{2}=j^{2}, j i=i^{-1} j\right\rangle .
$$

Again, it takes work to show this is the same group!

Ex: A presentation for S_{n}.
Let $T_{i}=\left(\begin{array}{ll}i & i+1\end{array}\right)$. Then

$$
S_{n}=\left\langle\begin{array}{l|l}
T_{1}, T_{2}, \ldots, T_{n-1} & \left.\begin{array}{l}
\begin{array}{l}
T_{i}^{2}=e \\
-T_{i} T_{j}=T_{j} T_{i}: f \\
\\
T_{i} T_{1+1} T_{i}=T_{i+1} T_{i} T_{i+1}
\end{array}
\end{array}\right\rangle\{\{-1,1 ; i ;\}
\end{array}\right\rangle
$$

This is not obvious, and takes work to prove!

Presentations are not always useful, and can obscure the nature of the ' group.

Ex: Let $G=\left\langle a, b \mid a b a=b a b,(a b a)^{3}=e\right\rangle$.
It, can be proved that $a=b$ and $G=\langle a\rangle$ is cyclic of order 9 .

Ex: Let $H=\left\langle a, b \mid a b a=b a b,(a b a)^{4}=e\right\rangle$.

It can be proved that H is an infinite non-abelian group!
In fact, $H \cong\left\{\left.\left[\begin{array}{ll}x & y \\ z & w\end{array}\right] \quad \right\rvert\, x, y, z, w \in \mathbb{Z}\right.$ and $\left.x w-y z=1\right\}$ via

$$
\begin{aligned}
a & \mapsto\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
b & \mapsto\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

so then

$$
a b a=b a b \mapsto\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

