Warm-Up: Write the following as a product of "adjacent transpositions" (ii+1)

- (13)
- (25)
- $\left(\begin{array}{ll}3 & 8\end{array}\right)$

I owe you a proof of:

Thu: The sign $\operatorname{sgn}(\sigma)$ of a permutation $\sigma \in S_{n}$ is well-defined.

Recall:•多n $(\sigma)=1$ if σ is the product of an even number of transpositions.

- $\operatorname{sgn}(\sigma)=-1$ if σ is the product of an odd number of transpositions.

The key step is to prove:
Lemma: The identity permutation is even. That is, if T_{1}, \ldots, T_{r} are transpositions such that

$$
T_{1} T_{2} \cdots T_{r}=i d,
$$

then r must be even.

Proof of Theorem (assuming the Lemma):
Suppose

$$
\begin{aligned}
\sigma & =T_{1} \cdots T_{k} \\
& =\mu_{1} \cdots \mu_{l}
\end{aligned}
$$

where the T_{i} and μ_{j} are transpositions.
Then

$$
\sigma^{-1}=T_{k} \cdots T_{1},
$$

so

$$
i d=\sigma^{-1} \sigma=T_{l} \cdots T_{1} \mu_{1} \cdots \mu_{l} .
$$

By the Lemma, $k+l$ must be even, so k and l are either both even or both odd.

园
Proof \#| of Lemma (Book's method):
Consider

$$
T_{1} \cdots T_{r-1} T_{r}=i d
$$

If $r=0$, there is nothing to prove.
Since the identity is not a transposition, $r \notin 1$.
So assume $r \geqslant 2$. Consider $T_{r}=\left(\begin{array}{ll}a & b\end{array}\right)$. We consider cases for what T_{r-1} could be:

Case 1: $T_{r-1}=T_{r}=\left(\begin{array}{ll}a & b\end{array}\right)$.
Then $T_{r-1} T_{r}=(a b)^{2}=i d$, so

$$
i d=T_{1} \cdots T_{r-2}
$$

Case 2: $T_{r-1}=\left(\begin{array}{ll}a & c\end{array}\right)$ for some $c \neq b$.
Then $T_{r-1} T_{r}=\left(\begin{array}{ll}a & c\end{array}\right)\left(\begin{array}{ll}a & b\end{array}\right)$

$$
=(a b)(b c)
$$

Case 3: $T_{r-1}=\left(\begin{array}{ll}b & c\end{array}\right)$ for some $c \neq a$
Then $T_{r-1} T_{r}=(b c)(a b)$

$$
=(\underline{a} c)(b c)
$$

Case 4: $T_{r-1}=(c d)$ where $\begin{aligned} & c \neq a, b \\ & d \neq a, b\end{aligned}$
Then $T_{r=1} T_{r}=(c d)\left(\begin{array}{ll}a & b\end{array}\right)$

$$
=(\underline{a} b)(c d)
$$

So either we

- Decrease the number of transpositions by 2 (Case 1)
OR
- Move the first instance of a one spot to the left (Cases 2-4)

Continue in this fashion, moving the first instance of a one spot to the left until we get a cancellation.

We must eventually get a cancellation.
If not, then id is a product of transpositions alae a only occurs in the first transposition.

But such a product doesn't fix a, so is not equal to id.

Thus, if id is equal to a product of $r>1$ transpositions, it is also equal to a product of $r-2$ transpositions.
By induction, r is even.

Here's another approach:
Def: Let $\sigma \in S_{n}$. An inversion of σ is a pair (i, j) such that $i<j$ but $\sigma(i)>\sigma(j)$.

Ex: Consider $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \in S_{3}$.

i	j	$\sigma(i)$	$\sigma(j)$	inversion?
1	2	2	3	N
1	3	2	1	y
2	3	3	1	y

So σ has two inversions.

We can visualize this as

Crossings in this diagram correspond to inversions (Prove it!)

Claim: Suppose $T_{1}, \ldots, T_{k} \in S_{n}$ are transpositions, and let $\sigma=T_{1} \cdots T_{k}$. Then

- If k is odd, then σ has an odd number of inversions.
- If k is even, then σ has an even number of inversions.

Proof \#2 of Lemma (assuming the Claim):
We have that id has 0 inversions, and O is even.

So we just need to prove the claim.

Proof of Claim (sketch):

Step 1: Show that any transposition is the product of an odd number of "adjacent" transpositions (i i+1).

Basically done in Warm-Up.
This means that any product $T_{1} \cdots T_{k}$ of transpositions can be replaced by a longer product of adjacent transpositions, where the number of adjacent transpositions is odd if and only if k is odd (and so even if and only if k is even).

Step 2: Argue that multiplication by an adjacent transposition changes the number of inversions by ± 1.

Idea: σ and $\sigma \cdot(i+1)$ have exactly the same inversions, except $(i, i+1)$ is an inversion of one but not the other.

Together, these 2 steps prove the Claim.

