

Recall:
$$sgn(\sigma) = 1$$
 if σ is the product
of an even number of transpositions.
 $sgn(\sigma) = -1$ if σ is the product
of an odd number of transpositions

The key step is to prove:
Lemma: The identity permutation is even.
That is, if
$$T_{1,...,T_{r}}$$
 are
transpositions such that
 $T_{1}T_{2}\cdots T_{r} = id$, (Note: r=0 is ox)
Hen r must be even.

Proof of Theorem (assuming the Lemma):
Suppose
$$\sigma = T_1 \cdots T_k$$

 $= M_1 \cdots M_k$,
where the T_i and M_j are transpositions.
Then

$$\sigma'' = T_k \cdots T_{i_j}$$

$$id = \sigma^{-1}\sigma = \tau_{L} \cdots \tau_{1} \mu_{1} \cdots \mu_{\ell}.$$

By the Lemma,
$$k+l$$
 must be even,
so k and l are either both even
or both odd.

Proof #1 of Lemma (Book's method):
Consider
 $T_1 \cdots T_{r-1} T_r = id.$

If $r=0$, there is nothing to prove.
Since the identity is not a transposition, $r\neq 1$.
So assume $r \ge 2$. Consider $T_r = (a \ b)$.
We consider cases for what T_{r-1} could
be:
Case 1: $T_{r-1} = T_r = (a \ b)$.
Then $T_{r-1} T_r = (a \ b)^2 = id$, so

$$id = T_{1} - T_{r-2}$$

$$\frac{\text{Case 2: } T_{r-1} = (a c) \text{ for some } c \neq b.$$

$$Then \quad T_{r-1}T_r = (a c)(a b)$$

$$= (a b)(b c).$$

$$\frac{Case 3}{T_{r-1}} = (b c) \text{ for some } c \neq a$$

$$Then \quad T_{r-1}T_r = (b c)(a b)$$

$$= (a c)(b c)$$

$$\underbrace{\operatorname{Case} \, \mathcal{H}: \, T_{r-1} = (c \, d) \quad \text{where} \quad c \neq a, b \\ d \neq a, b \\ Then \quad T_{r-1} \, T_r = (c \, d) (a \, b) \\ = (a \, b) (c \, d)$$

So either ve

·Decrense the number of transpositions by Z (Case 1) OR

· Move the first instance of a one spot to the left (Cases 2-4)

We must eventually get a cancellation. If not, then id is a product of transpositions where a only occurs in the first transposition.

But such a product doesn't fix a, so is not equal to id. Thus, if id is equal to a product of r>1 transpositions, it is also equal to a product of r-2 transpositions. By induction, r is even. Ħ

Claim: Suppose
$$T_1, ..., T_k \in S_n$$
 are transpositions,
and let $\sigma = T_1 \cdots T_k$. Then
If k is odd, then σ has
an odd number of inversions.
If k is even, then σ has
an even number of inversions.

Proof of Claim (sketch): <u>Step 1</u>: Show that any transposition is the product of an <u>odd</u> number of "adjacent" transpositions (i i+1). Basically done in Warm-Up. This means that any product $T_1 \cdots T_k$ of transpositions can be replaced by a longer product of adjacent transpositions, where the number of adjacent transpositions is odd if and only if k is odd (and so even if and only if k is even).

Step 2: Argne that multiplication by an adjacent transposition changes the number of inversions by ±1. Idea: σ and σ .(: :+i) have exactly the same inversions, except (i, i+1) is an inversion of one but not the other.

Togetter, these Z steps prove the Claim.