More set theory review Let A and B be sets. . The intersection of A and B is ANB = {x | xeA and xeB} . The union of A and B is AUB= {x | xeA or xeB} . The set différence or relative complement A\B={x | x \in A and x # B} • If all the objects we are interested in come from some set U ("universe"), then the complement of $A \subseteq U$ is $A^{c} = U \setminus A$

The Cartesian product of two sets A and B is $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}.$

A function (or mapping or map) from
a set A to a set B is a subset
$$f \leq A \times B$$

such that
(A) for every $x \in A$, there is a unique $y \in B$
such that $(x, y) \in f$.
We never use this notation! Write

• $f: A \rightarrow B$ instead of $f \in A \times B$

• f(x)=y instead of (x,y) ext{ f.}

The function
$$f: A \rightarrow B$$
 is injective
(or one-to-one) if for all $x_{1}, x_{2} \in A$,
 $f(x_{1}) = f(x_{2}) \implies x_{1} = x_{2}$.
[Equivalently, $x_{1} \neq x_{2} \implies f(x_{1}) \neq f(x_{2})$.]
The function $f: A \rightarrow B$ is surjective (or
onto) if $f(A) = B$.
Note: $f(A) \leq B$ by definition.

$$\frac{Properties}{Properties} \quad (from Math 3345)$$
Suppose $f: A \rightarrow B$ is a bijection.
Then
$$f^{-1} \circ f = id_A : A \rightarrow A.$$

$$f \circ f^{-1} = id_B : B \rightarrow B.$$

$$f^{-1} = id_B : B \rightarrow B.$$

Thm: Let
$$f:A \rightarrow B$$
 be a function.
If there exists $g:B \rightarrow A$ such that
 $g \circ f = id_A$ and $f \circ g = id_B$,
then f is a bijection and $g = f^{-1}$.

Equivalence relations Def: A relation R on a set S is a subset of S×S Notation: Instead of writing (x,y) & R, ne usually write x Ry. Ex: · ≤ is a relation on R (or Z, or Q) · So is <. · = is a relation on any set · 7 is a relation on any set Def: A relation \sim on a set S is an <u>equivalence relation</u> if for all $x, y, z \in S$, ① x ~ x, [reflexive] (2) if x ~ y, then y ~ x, [symmetric]
(3) if x ~ y and y~z, then x~z. [transitive]

Ex: = is an equivalence relation • \leq fails (2) • \leq fails (1) and (2) • \neq fails (1) and (3)