More set theory review Let A and B be sets.
-The intersection of A and B is

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

-The union of A and B is

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

-The set difference or relative complement is

$$
A \backslash B=\{x \mid x \in A \text { and } x \not x B\}
$$

- If all the objects ne are interested in come from some set U ("universe'), then the complement of $A \subseteq U$ is

$$
A^{c}=u \backslash A .
$$

Caution: The textbook uses

- $A \subset B$ instead of $A \subseteq B$
- A^{\prime} instead of A^{c}

Thy (De Morgan's laws for sets).
Let A and B be sets, each a subset of a universe U. Then
(1) $(A \cup B)^{c}=A^{c} \cap B^{c}$
(2) $(A \cap B)^{c}=A^{c} \cup B^{c}$

Proof: Math 3345 / text.

The Cartesian product of two sets A and B is

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\} \text {. }
$$

A function (or mapping or map) from a set A to a set B is a subset

$$
f \subseteq A \times B
$$

such that
(A) for every $x \in A$, there is a unique $y \in B$ such that $(x, y) \in f$.

We never use this notation! Write

- $f: A \rightarrow B$ instead of $f \subseteq A \times B$
- $f(x)=y$ instead of $(x, y) \in f$.

For a function $f: A \rightarrow B$,

- the domain is A,
- the codomain is B,
- the range (or image) is

$$
f(A)=\{f(x) \mid x \in A\} .
$$

The function $f: A \rightarrow B$ is infective (or one-to-one) if for all $x_{1}, x_{2} \in A$,

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} .
$$

[Equivalently, $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.]
The function $f: A \rightarrow B$ is surjective (or onto) if $f(A)=B$.

Note: $f(A) \subseteq B$ by definition.

A function is bijective if it is both injective and surjective.

Nouns: Injection, surjection, bijection.
On any set S there is the $\xrightarrow[\text { identity function }]{\text { ids: } S \rightarrow S}$

$$
\mathbf{x} \mapsto x .
$$

If $f: A \rightarrow B$ is a bijection, then for each $y \in B$ there exists a unique
$x \in A$ such that $f(x)=y$. surgective $x \in A$ such that $f(x)=y$.
This property defines the inverse function $f^{-1}: B \rightarrow A$.

Properties (from Math 3345)
Suppose $f: A \rightarrow B$ is a bijection.
Then

$$
\begin{aligned}
& \text { - } f^{-1} \circ f=i d_{A}: A \rightarrow A . \\
& \text { - } f \circ f^{-1}=i d_{B}: B \rightarrow B .
\end{aligned}
$$

- f^{-1} is also a bijection, with $\left(f^{-1}\right)^{-1}=f$.

The: Let $f: A \rightarrow B$ be a function. If there exists $g: B \rightarrow A$ such that

$$
g \circ f=i d_{A} \quad \text { and } \quad f \circ g=i d_{B},
$$

then f is a bijection and $g=f^{-1}$.

Equivalence relations
Def: A relation R on a set S is a subset of $S \times S$
Notation: Instead of writing $(x, y) \in R$, we usually write $\times R_{y}$.
Ex: $\cdot \leq$ is a relation on $\mathbb{R}($ or \mathbb{Z}, or $\mathbb{Q})$

- So is <.
- = is a relation on any set
- \neq is a relation on any set

Def: A relation \sim on a set S is an equivalence relation if for all $\chi_{x, y, z} \in S$,
(1) $x \sim x$, [reflexive]
(2) if $x \sim y$, then $y \sim x,[$ symmetric]
(3) if $x \sim y$ and $y \sim z$, then $x \sim z$.

Ex: - = is an equivalence relation

- \leq fails (2)
- fails (1) and (2)
- \neq fails (1) and (3)

