Def: The alternating group $A_{n} \leq S_{n}$ is the subgroup of ${S_{n}}$ consisting of all even permutations.

Why is A_{n} a group?

- Closure: If $\sigma_{1}=T_{1} \cdots T_{n}$ and $\sigma_{2}=\mu_{1} \cdots \mu_{l}$, whee T_{i} and μ_{j} are transpositions, then

$$
\sigma_{1} \sigma_{2}=\tau_{1} \cdots \tau_{k} \mu_{1} \cdots \mu_{l} .
$$

If $\sigma_{1}, \sigma_{2} \in A_{n}$, then k and l are both even, so $k+l$ is even and $\sigma_{1} \sigma_{2} \in A_{n}$.

- Identity: We proved that id is even last time.
- Inverses: If $\sigma=T_{1} \cdots T_{L}$, he T_{i} are trancosositions, then $\sigma^{-1}=T_{L} \cdots T_{1}$, so σ^{-1} is even if σ is.

Warm-Up: List all elements of A_{3} and A_{4}.

The: For $n \geqslant 2,\left|A_{n}\right|=\frac{n!}{2}$. That is, exactly half of the permutations in S_{n} are even, and half are odd.

Proof: Define a function

$$
\begin{aligned}
f: A_{n} & \rightarrow S_{n} \backslash A_{n} \\
\sigma & \mapsto \sigma \cdot(12)
\end{aligned}
$$

Note that f is well-defined, since $\sigma .(12)$ is odd if σ is even (and $(12) \in S_{n}$, since $n \geqslant 2$).

Then f is injective, since $f\left(\sigma_{1}\right)=f\left(\sigma_{2}\right)$ implies

$$
\begin{aligned}
\sigma_{1}(1-2) & =\sigma_{2}(1-2) \\
\sigma_{1} & =\sigma_{2} .
\end{aligned}
$$

And f is also surjective: If $\tau \in S_{n} \backslash A_{n}$ is odd, then $\tau\left(\begin{array}{ll}1 & 2) \\ \text { is even, and }\end{array}\right.$

$$
f(\tau(12))=\tau(12)(12)=\tau .
$$

Thus, f is a bijection, so $\left|A_{n}\right|=n!-\left|A_{n}\right|$, or $\left|A_{n}\right|=\frac{n!}{2}$.

Where are we now?
We have compiled a compendium of examples of groups.

Group	Order	Abelian?
\mathbb{Z}_{n}	n	Y
$U(n)$	$\phi(n)$	Y
\mathbb{Z}	∞	Y
\mathbb{R}	∞	Y
S_{n}	$n!$	$N(n \geqslant 3)$
D_{n}	$2 n$	N
A_{n}	$\frac{n!}{2}$	$N(n \geqslant 4)$
$G L_{n}(\mathbb{R})$	∞	$N(n \geqslant 2)$

Where are we going?
We will prove some general theorems about groups. In doing so, it will be useful to continually refer back to our list of examples.

In particular, here is some "numerology" Ind like to understand:
$\cdot\left|\mathbb{Z}_{n}\right|=n$, and \mathbb{Z}_{n} has a subgroup of order d for each positive divisor $d l_{n}$.

- $\left|D_{4}\right|=8$, and D_{4} has subgroups of orders $1,2,4,8$.
- $\left|Q_{8}\right|=8$, and Q_{8} has s.logronps of orders $1,2,4,8$.
- Sgn: $S_{n} \rightarrow\{1,-1\}$ has $\left|\operatorname{sgn}^{-1}(1)\right|=\left|A_{n}\right|=\frac{\left|S_{n}\right|}{(2)}$, while $|\{1,-1\}|=2 \ldots$

