Thm: For $n \ge 2$, $|A_n| = \frac{n!}{2}$. That is, exactly half of the permutations in S_n are even, and half are odd. Proof: Define a function $f: A_n \rightarrow S_n \setminus A_n$ $\sigma \mapsto \sigma \cdot (12)$ Note that f is well-defined, since o.(12) is odd if σ is even (and $(12) \in S_n$, since $n \ge 2$). Then f is injective, since $f(\sigma_1) = f(\sigma_2)$ implies $\sigma_{1}(12) = \sigma_{2}(12)$ $\sigma_1 = \sigma_2$ And f is also surjective: If TESNAn is odd, Hen T(12) is even, and $f(T(12)) = T(12)(12) = T_{.}$ Thus, f is a bijection, so $|A_n| = n! - |A_n|$, or $|A_n| = \frac{n!}{2}$.

Where are ne now?		
We have compiled a compendium of examples of groups.		
Group	Order	Abelian?
Zn	n	У
U(n)	ø(n)	У
Z	\sim	Y
R	$\boldsymbol{\omega}$	Y
Sn	n!	N (n≥3)
Dr	2n	N
A,	<u>n!</u> Z	N (n24)
GL_(R)	\sim	N (n=2)